Search Results
You are looking at 1 - 10 of 15 items for :
- Author or Editor: H. Zhang x
- Journal of the Atmospheric Sciences x
- Refine by Access: All Content x
Abstract
Baroclinic eddy equilibration and the roles of different boundary layer processes in limiting the baroclinic adjustment are studied using an atmosphere–ocean thermally coupled model. Boundary layer processes not only affect the dynamical constraint of the midlatitude baroclinic eddy equilibration but also are important components in the underlying surface energy budget. The authors' study shows that baroclinic eddies, with the strong mixing of the surface air temperature, compete against the fast boundary layer thermal damping and enhance the meridional variation of surface sensible heat flux, acting to reduce the meridional gradient of the surface temperature. Nevertheless, the requirement of the surface energy balance indicates that strong surface baroclinicity is always maintained in response to the meridionally varying solar radiation. With the strong surface baroclinicity and the boundary layer processes, the homogenized potential vorticity (PV) suggested in the baroclinic adjustment are never observed near the surface or in the boundary layer.
Although different boundary layer processes affect baroclinic eddy equilibration differently with more dynamical feedbacks and time scales included in the coupled system, their influence in limiting the PV homogenization is more uniform compared with the previous uncoupled runs. The boundary layer PV structure is more determined by the strength of the boundary layer damping than the surface baroclinicity. Stronger boundary layer processes always prevent the lower-level PV homogenization more efficiently. Above the boundary layer, a relatively robust PV structure with homogenized PV around 600–800 hPa is obtained in all of the simulations. The detailed mechanisms through which different boundary layer processes affect the equilibration of the coupled system are discussed in this study.
Abstract
Baroclinic eddy equilibration and the roles of different boundary layer processes in limiting the baroclinic adjustment are studied using an atmosphere–ocean thermally coupled model. Boundary layer processes not only affect the dynamical constraint of the midlatitude baroclinic eddy equilibration but also are important components in the underlying surface energy budget. The authors' study shows that baroclinic eddies, with the strong mixing of the surface air temperature, compete against the fast boundary layer thermal damping and enhance the meridional variation of surface sensible heat flux, acting to reduce the meridional gradient of the surface temperature. Nevertheless, the requirement of the surface energy balance indicates that strong surface baroclinicity is always maintained in response to the meridionally varying solar radiation. With the strong surface baroclinicity and the boundary layer processes, the homogenized potential vorticity (PV) suggested in the baroclinic adjustment are never observed near the surface or in the boundary layer.
Although different boundary layer processes affect baroclinic eddy equilibration differently with more dynamical feedbacks and time scales included in the coupled system, their influence in limiting the PV homogenization is more uniform compared with the previous uncoupled runs. The boundary layer PV structure is more determined by the strength of the boundary layer damping than the surface baroclinicity. Stronger boundary layer processes always prevent the lower-level PV homogenization more efficiently. Above the boundary layer, a relatively robust PV structure with homogenized PV around 600–800 hPa is obtained in all of the simulations. The detailed mechanisms through which different boundary layer processes affect the equilibration of the coupled system are discussed in this study.
Abstract
Baroclinic eddy equilibration under a Northern Hemisphere–like seasonal forcing is studied using a modified multilayer quasigeostrophic channel model to investigate the widely used “quick baroclinic eddy equilibration” assumption and to understand to what extent baroclinic adjustment can be applied to interpret the midlatitude climate. Under a slowly varying seasonal forcing, the eddy and mean flow seasonal behavior is characterized by four clearly divided time intervals: an eddy inactive time interval in summer, a mainly dynamically determined eddy spinup time interval starting in midfall and lasting less than one month, and a quasi-equilibrium time interval for the zonal mean flow available potential energy from late fall to late spring, with a mainly external forcing determined spindown time interval for eddy activity from late winter to late spring. The baroclinic adjustment can be clearly observed from late fall to late spring. The sensitivity study of the eddy equilibration to the time scale of the external forcing indicates that the time scale separation between the baroclinic adjustment and the external forcing in midlatitudes is only visible for external forcing cycles one year and longer.
In spite of the strong seasonality of the eddy activity, similar to the observations, a robust potential vorticity (PV) structure is still observed through all the seasons. However, it is found that baroclinic eddy is not the only candidate mechanism to maintain the robust PV structure. The role of the boundary layer thermal forcing and the moist convection in maintaining the lower-level PV structure is discussed. The adjustment and the vertical variation of the lower-level stratification play an important role in all of these mechanisms.
Abstract
Baroclinic eddy equilibration under a Northern Hemisphere–like seasonal forcing is studied using a modified multilayer quasigeostrophic channel model to investigate the widely used “quick baroclinic eddy equilibration” assumption and to understand to what extent baroclinic adjustment can be applied to interpret the midlatitude climate. Under a slowly varying seasonal forcing, the eddy and mean flow seasonal behavior is characterized by four clearly divided time intervals: an eddy inactive time interval in summer, a mainly dynamically determined eddy spinup time interval starting in midfall and lasting less than one month, and a quasi-equilibrium time interval for the zonal mean flow available potential energy from late fall to late spring, with a mainly external forcing determined spindown time interval for eddy activity from late winter to late spring. The baroclinic adjustment can be clearly observed from late fall to late spring. The sensitivity study of the eddy equilibration to the time scale of the external forcing indicates that the time scale separation between the baroclinic adjustment and the external forcing in midlatitudes is only visible for external forcing cycles one year and longer.
In spite of the strong seasonality of the eddy activity, similar to the observations, a robust potential vorticity (PV) structure is still observed through all the seasons. However, it is found that baroclinic eddy is not the only candidate mechanism to maintain the robust PV structure. The role of the boundary layer thermal forcing and the moist convection in maintaining the lower-level PV structure is discussed. The adjustment and the vertical variation of the lower-level stratification play an important role in all of these mechanisms.
Abstract
For the purpose of deriving grid-scale vertical velocity and advective tendencies from sounding measurements, an objective scheme is developed to process atmospheric soundings of winds, temperature, and water vapor mixing ratio over a network of a small number of stations. Given the inevitable uncertainties in the original data, state variables of the atmosphere are adjusted by the smallest possible amount in this scheme to conserve column-integrated mass, moisture, static energy, and momentum. The scheme has the capability of incorporating a variety of supplemental measurements to constrain large-scale vertical velocity and advective tendencies derived from state variables.
The method has been implemented to process the Atmospheric Radiation Measurement Program’s (ARM) soundings of winds, temperature, and water vapor mixing ratio at the boundary facilities around the Cloud and Radiation Testbed site in northern Oklahoma in April 1994. It is found that state variables are adjusted by an amount comparable to their measurement uncertainties to satisfy the conservation requirements of mass, water vapor, heat, and momentum. Without these adjustments, spurious residual sources and sinks in the column budget of each quantity have the same magnitudes as other leading components. Sensitivities of the diagnosed vertical velocity and apparent heat, moisture, and momentum sources to the number of conservation constraints are presented. It is shown that constraints of column budget of moisture and dry static energy can make large differences to these diagnostics, especially when some original sounding data are missing and have to be interpolated.
Analysis of the moisture budget shows that large-scale convergence often corresponds to precipitation, but there are occasions when precipitation corresponds to a large reduction of column precipitable water and column-moisture divergence. Analysis of momentum budget shows large magnitudes of subgrid-scale momentum sources and sinks (about 4 m s−1 h−1) in the convective events.
Abstract
For the purpose of deriving grid-scale vertical velocity and advective tendencies from sounding measurements, an objective scheme is developed to process atmospheric soundings of winds, temperature, and water vapor mixing ratio over a network of a small number of stations. Given the inevitable uncertainties in the original data, state variables of the atmosphere are adjusted by the smallest possible amount in this scheme to conserve column-integrated mass, moisture, static energy, and momentum. The scheme has the capability of incorporating a variety of supplemental measurements to constrain large-scale vertical velocity and advective tendencies derived from state variables.
The method has been implemented to process the Atmospheric Radiation Measurement Program’s (ARM) soundings of winds, temperature, and water vapor mixing ratio at the boundary facilities around the Cloud and Radiation Testbed site in northern Oklahoma in April 1994. It is found that state variables are adjusted by an amount comparable to their measurement uncertainties to satisfy the conservation requirements of mass, water vapor, heat, and momentum. Without these adjustments, spurious residual sources and sinks in the column budget of each quantity have the same magnitudes as other leading components. Sensitivities of the diagnosed vertical velocity and apparent heat, moisture, and momentum sources to the number of conservation constraints are presented. It is shown that constraints of column budget of moisture and dry static energy can make large differences to these diagnostics, especially when some original sounding data are missing and have to be interpolated.
Analysis of the moisture budget shows that large-scale convergence often corresponds to precipitation, but there are occasions when precipitation corresponds to a large reduction of column precipitable water and column-moisture divergence. Analysis of momentum budget shows large magnitudes of subgrid-scale momentum sources and sinks (about 4 m s−1 h−1) in the convective events.
Abstract
Two questions related to the intraseasonal variability of tropical convection and circulation remain controversial. 1) To what degree is the convective component of the Madden–Julian oscillation (MJO) a standing oscillation? 2) Is the eastward propagating circulation anomaly of the MJO coherent with a standing oscillation in convection?
In an attempt to settle these issues, the authors undertake a series of statistical analyses of gridded outgoing longwave radiation and winds to quantify the magnitudes of the propagating and standing components of convection and their coherence with the propagating component of the circulation. They demonstrate that no dominant standing oscillation in convection can be identified. Instead, intraseasonal variability of convection is dominated by an eastward propagating mode, which the authors interpret as the convective signal of the MJO. This propagating component accounts for almost all of the convective variance that is coherent with the eastward propagating disturbance in the zonal wind, which is a traditional measure of the MJO. Analysis of synthetic time series illustrates that an impression of a standing oscillation in convection may come forth because of the modulation of the eastward propagating convective disturbance by an amplitude envelope with maxima in the eastern Indian and western Pacific Oceans and a minimum over the maritime continents.
Abstract
Two questions related to the intraseasonal variability of tropical convection and circulation remain controversial. 1) To what degree is the convective component of the Madden–Julian oscillation (MJO) a standing oscillation? 2) Is the eastward propagating circulation anomaly of the MJO coherent with a standing oscillation in convection?
In an attempt to settle these issues, the authors undertake a series of statistical analyses of gridded outgoing longwave radiation and winds to quantify the magnitudes of the propagating and standing components of convection and their coherence with the propagating component of the circulation. They demonstrate that no dominant standing oscillation in convection can be identified. Instead, intraseasonal variability of convection is dominated by an eastward propagating mode, which the authors interpret as the convective signal of the MJO. This propagating component accounts for almost all of the convective variance that is coherent with the eastward propagating disturbance in the zonal wind, which is a traditional measure of the MJO. Analysis of synthetic time series illustrates that an impression of a standing oscillation in convection may come forth because of the modulation of the eastward propagating convective disturbance by an amplitude envelope with maxima in the eastern Indian and western Pacific Oceans and a minimum over the maritime continents.
Abstract
An unfiltered zonal Hovmöller depiction of rainfall in the Maritime Continent (MC) reveals remarkable spatiotemporal continuity of zonally propagating disturbances with a diurnal period, which endure over multiple days and propagate faster than the individual convective storms they coupled with. This phenomenon and its sensitivity to the Madden–Julian oscillation (MJO) during the 2011/12 Dynamics of the MJO (DYNAMO) field campaign is examined here through a well-validated, convection-permitting model simulation conducted on a large domain. We find that these disturbances are zonally propagating diurnal gravity waves excited by vigorous nocturnal mesoscale convective systems over Sumatra and Borneo. These gravity waves are diurnally phase locked: their wavelength very closely matches the distance between these two islands (~1500 km), while their particular zonal phase speed (~±17 m s−1) allows them to propagate this distance in one diurnal cycle. We therefore hypothesize that these waves are amplified by resonant interaction due to diurnal phase locking. While these zonal gravity waves decouple from convection once beyond the MC, their divergent flow signature endures well across the Indian Ocean, provoking the notion that they may influence rainfall at far remote locations. The exact controls over this zonal phase speed remain uncertain; we note, however, that it is roughly consistent with diurnal offshore-propagating modes documented previously. Further study is required to tie this down, and more generally, to understand the sensitivity of these modes to background flow strength and the geography of the MC.
Abstract
An unfiltered zonal Hovmöller depiction of rainfall in the Maritime Continent (MC) reveals remarkable spatiotemporal continuity of zonally propagating disturbances with a diurnal period, which endure over multiple days and propagate faster than the individual convective storms they coupled with. This phenomenon and its sensitivity to the Madden–Julian oscillation (MJO) during the 2011/12 Dynamics of the MJO (DYNAMO) field campaign is examined here through a well-validated, convection-permitting model simulation conducted on a large domain. We find that these disturbances are zonally propagating diurnal gravity waves excited by vigorous nocturnal mesoscale convective systems over Sumatra and Borneo. These gravity waves are diurnally phase locked: their wavelength very closely matches the distance between these two islands (~1500 km), while their particular zonal phase speed (~±17 m s−1) allows them to propagate this distance in one diurnal cycle. We therefore hypothesize that these waves are amplified by resonant interaction due to diurnal phase locking. While these zonal gravity waves decouple from convection once beyond the MC, their divergent flow signature endures well across the Indian Ocean, provoking the notion that they may influence rainfall at far remote locations. The exact controls over this zonal phase speed remain uncertain; we note, however, that it is roughly consistent with diurnal offshore-propagating modes documented previously. Further study is required to tie this down, and more generally, to understand the sensitivity of these modes to background flow strength and the geography of the MC.
Abstract
A β-plane multilevel quasigeostrophic channel model with interactive static stability and a simplified parameterization of atmospheric boundary layer physics is used to study the role of different boundary layer processes in eddy equilibration and their relative effect in maintaining the strong boundary layer potential vorticity (PV) gradient.
The model results show that vertical thermal diffusion, along with the surface heat exchange, is primarily responsible for limiting PV homogenization by baroclinic eddies in the boundary layer. Under fixed SST boundary conditions, these two processes act as the source of the mean flow baroclinicity in the lower levels and result in stronger eddy heat fluxes.
Reducing surface friction alone does not result in efficient elimination of the boundary layer PV gradient, but the equilibrium state temperature gradient is still largely influenced by surface friction and its response to changes in surface friction is not monotonic. In the regime of strong surface friction, with reduced poleward eddy heat flux, a strong temperature gradient is still retained. When the surface friction is sufficiently weak along with the stronger zonal wind, the critical level at the center of the jet drops below the surface. As a result, in the lower levels, the eddy heat flux forcing on the mean flow moves away from the center of the jet and the equilibrium state varies only slightly with the strength of the vertical momentum diffusion in the boundary layer.
Abstract
A β-plane multilevel quasigeostrophic channel model with interactive static stability and a simplified parameterization of atmospheric boundary layer physics is used to study the role of different boundary layer processes in eddy equilibration and their relative effect in maintaining the strong boundary layer potential vorticity (PV) gradient.
The model results show that vertical thermal diffusion, along with the surface heat exchange, is primarily responsible for limiting PV homogenization by baroclinic eddies in the boundary layer. Under fixed SST boundary conditions, these two processes act as the source of the mean flow baroclinicity in the lower levels and result in stronger eddy heat fluxes.
Reducing surface friction alone does not result in efficient elimination of the boundary layer PV gradient, but the equilibrium state temperature gradient is still largely influenced by surface friction and its response to changes in surface friction is not monotonic. In the regime of strong surface friction, with reduced poleward eddy heat flux, a strong temperature gradient is still retained. When the surface friction is sufficiently weak along with the stronger zonal wind, the critical level at the center of the jet drops below the surface. As a result, in the lower levels, the eddy heat flux forcing on the mean flow moves away from the center of the jet and the equilibrium state varies only slightly with the strength of the vertical momentum diffusion in the boundary layer.
Abstract
This study investigates gravity wave spectral characteristics based on high-resolution mesoscale simulations of idealized moist baroclinic jet–front systems with varying degrees of convective instability, with the intent of improving nonorographic gravity wave parameterizations. In all experiments, there is a clear dominance of negative vertical flux of zonal momentum. The westward momentum flux is distributed around the estimated ground-based baroclinic wave phase velocity along the zonal direction, while strong moist runs indicate a dipole structure pattern with stronger westward momentum flux centers at slower phase velocity and weaker eastward momentum flux centers at faster phase velocity. The spectral properties of short-scale wave components (50–200 km) generally differ from those of medium-scale ones (200–600 km). Compared to the medium-scale wave components, the momentum flux phase speed spectra for the short-scale ones appear to be more sensitive to the increasing initial moisture content. The spectral behavior in horizontal wavenumber space or phase velocity space is highly anisotropic, with a noticeable preference along the jet direction, except for the short-scale components in strong moist runs. It is confirmed that the dry gravity wave source (i.e., upper jet and/or surface front) generates a relatively narrow and less symmetrical power spectrum (dominated by negative momentum flux) centered around lower phase velocity and horizontal wavenumber, whereas the moist gravity wave source (i.e., moist convection) generates a broader and more symmetrical power spectrum, with a broader range of phase speeds and horizontal wavenumbers. This study also shows that the properties of gravity wave momentum flux depend on the location relative to the baroclinic jet.
Abstract
This study investigates gravity wave spectral characteristics based on high-resolution mesoscale simulations of idealized moist baroclinic jet–front systems with varying degrees of convective instability, with the intent of improving nonorographic gravity wave parameterizations. In all experiments, there is a clear dominance of negative vertical flux of zonal momentum. The westward momentum flux is distributed around the estimated ground-based baroclinic wave phase velocity along the zonal direction, while strong moist runs indicate a dipole structure pattern with stronger westward momentum flux centers at slower phase velocity and weaker eastward momentum flux centers at faster phase velocity. The spectral properties of short-scale wave components (50–200 km) generally differ from those of medium-scale ones (200–600 km). Compared to the medium-scale wave components, the momentum flux phase speed spectra for the short-scale ones appear to be more sensitive to the increasing initial moisture content. The spectral behavior in horizontal wavenumber space or phase velocity space is highly anisotropic, with a noticeable preference along the jet direction, except for the short-scale components in strong moist runs. It is confirmed that the dry gravity wave source (i.e., upper jet and/or surface front) generates a relatively narrow and less symmetrical power spectrum (dominated by negative momentum flux) centered around lower phase velocity and horizontal wavenumber, whereas the moist gravity wave source (i.e., moist convection) generates a broader and more symmetrical power spectrum, with a broader range of phase speeds and horizontal wavenumbers. This study also shows that the properties of gravity wave momentum flux depend on the location relative to the baroclinic jet.
Abstract
Long-lived, zonally propagating diurnal rainfall disturbances are a highly pronounced and common feature in the Maritime Continent (MC). A recent study argues that these disturbances can be explained as diurnally phase-locked gravity waves. Here we explore the origins of these waves through regional cloud-permitting numerical model experiments. The gravity waves are reproduced and isolated in the model framework through the combined use of realistic geography and diurnally cyclic lateral boundary conditions representative of both characteristic easterly and westerly background zonal flow regimes. These flow regimes are characteristic of the Madden–Julian oscillation (MJO) suppressed and active phase in the MC, respectively. Tests are conducted wherein Borneo, Sumatra, or both islands and/or their orography are removed. These tests imply that the diurnal gravity waves are excited and maintained directly by latent heating from the vigorous mesoscale convective systems (MCSs) that form nocturnally in both Borneo and Sumatra. Removing orography has only a secondary impact on both the MCSs and the gravity waves, implying that it is not critical to these waves. We therefore hypothesize that diurnal gravity waves are fundamentally driven by mesoscale organized deep convection, and are only sensitive to orography to the measure that the convection is affected by the orography and its mesoscale flows. Factor separation further reveals that the nonlinear interaction of synchronized diurnal cycles in Sumatra and Borneo slightly amplifies this gravity wave mode compared to if either island existed in isolation. This nonlinear feedback appears most prominently at longitudes directly between the two islands.
Abstract
Long-lived, zonally propagating diurnal rainfall disturbances are a highly pronounced and common feature in the Maritime Continent (MC). A recent study argues that these disturbances can be explained as diurnally phase-locked gravity waves. Here we explore the origins of these waves through regional cloud-permitting numerical model experiments. The gravity waves are reproduced and isolated in the model framework through the combined use of realistic geography and diurnally cyclic lateral boundary conditions representative of both characteristic easterly and westerly background zonal flow regimes. These flow regimes are characteristic of the Madden–Julian oscillation (MJO) suppressed and active phase in the MC, respectively. Tests are conducted wherein Borneo, Sumatra, or both islands and/or their orography are removed. These tests imply that the diurnal gravity waves are excited and maintained directly by latent heating from the vigorous mesoscale convective systems (MCSs) that form nocturnally in both Borneo and Sumatra. Removing orography has only a secondary impact on both the MCSs and the gravity waves, implying that it is not critical to these waves. We therefore hypothesize that diurnal gravity waves are fundamentally driven by mesoscale organized deep convection, and are only sensitive to orography to the measure that the convection is affected by the orography and its mesoscale flows. Factor separation further reveals that the nonlinear interaction of synchronized diurnal cycles in Sumatra and Borneo slightly amplifies this gravity wave mode compared to if either island existed in isolation. This nonlinear feedback appears most prominently at longitudes directly between the two islands.
Abstract
Heating profiles calculated from sounding networks and other observations during three Tropical Rainfall Measuring Mission (TRMM) field campaigns [the Kwajalein Experiment (KWAJEX), TRMM Large-Scale Biosphere–Atmosphere Experiment in Amazonia (LBA), and South China Sea Monsoon Experiment (SCSMEX)] show distinct geographical differences between oceanic, continental, and monsoon regimes. Differing cloud types (both precipitating and nonprecipitating) play an important role in determining the total diabatic heating profile. Variations in the vertical structure of the apparent heat source, Q 1, can be related to the diurnal cycle, large-scale forcings such as atmospheric waves, and rain thresholds at each location. For example, TRMM-LBA, which occurred in the Brazilian Amazon, had mostly deep convection during the day while KWAJEX, which occurred in the western portion of the Pacific intertropical convergence zone, had more shallow and moderately deep daytime convection. Therefore, the afternoon height of maximum heating was more bottom heavy (i.e., heating below 600 hPa) during KWAJEX compared to TRMM-LBA. More organized convective systems with extensive stratiform rain areas and upper-level cloud decks tended to occur in the early and late morning hours during TRMM-LBA and KWAJEX, respectively, thereby causing Q 1 profiles to be top heavy (i.e., maxima from 600 to 400 hPa) at those times. SCSMEX, which occurred in the South China Sea during the monsoon season, had top-heavy daytime and nighttime heating profiles suggesting that mesoscale convective systems occurred throughout the diurnal cycle, although more precipitation and upper-level cloud in the afternoon caused the daytime heating maximum to be larger. A tendency toward bottom- and top-heavy heating profile variations is also associated with the different cloud types that occurred before and after the passage of easterly wave troughs during KWAJEX, the easterly and westerly regimes during TRMM-LBA, and the monsoon onset and postonset active periods during SCSMEX. Rain thresholds based on heavy, moderate, and light/no-rain amounts can further differentiate top-heavy heating, bottom-heavy heating, and tropospheric cooling. These budget studies suggest that model calculations and satellite retrievals of Q 1 must account for a large number of factors in order to accurately determine the vertical structure of diabatic heating associated with tropical cloud systems.
Abstract
Heating profiles calculated from sounding networks and other observations during three Tropical Rainfall Measuring Mission (TRMM) field campaigns [the Kwajalein Experiment (KWAJEX), TRMM Large-Scale Biosphere–Atmosphere Experiment in Amazonia (LBA), and South China Sea Monsoon Experiment (SCSMEX)] show distinct geographical differences between oceanic, continental, and monsoon regimes. Differing cloud types (both precipitating and nonprecipitating) play an important role in determining the total diabatic heating profile. Variations in the vertical structure of the apparent heat source, Q 1, can be related to the diurnal cycle, large-scale forcings such as atmospheric waves, and rain thresholds at each location. For example, TRMM-LBA, which occurred in the Brazilian Amazon, had mostly deep convection during the day while KWAJEX, which occurred in the western portion of the Pacific intertropical convergence zone, had more shallow and moderately deep daytime convection. Therefore, the afternoon height of maximum heating was more bottom heavy (i.e., heating below 600 hPa) during KWAJEX compared to TRMM-LBA. More organized convective systems with extensive stratiform rain areas and upper-level cloud decks tended to occur in the early and late morning hours during TRMM-LBA and KWAJEX, respectively, thereby causing Q 1 profiles to be top heavy (i.e., maxima from 600 to 400 hPa) at those times. SCSMEX, which occurred in the South China Sea during the monsoon season, had top-heavy daytime and nighttime heating profiles suggesting that mesoscale convective systems occurred throughout the diurnal cycle, although more precipitation and upper-level cloud in the afternoon caused the daytime heating maximum to be larger. A tendency toward bottom- and top-heavy heating profile variations is also associated with the different cloud types that occurred before and after the passage of easterly wave troughs during KWAJEX, the easterly and westerly regimes during TRMM-LBA, and the monsoon onset and postonset active periods during SCSMEX. Rain thresholds based on heavy, moderate, and light/no-rain amounts can further differentiate top-heavy heating, bottom-heavy heating, and tropospheric cooling. These budget studies suggest that model calculations and satellite retrievals of Q 1 must account for a large number of factors in order to accurately determine the vertical structure of diabatic heating associated with tropical cloud systems.
Abstract
Boundary layer turbulent processes affect tropical cyclone (TC) structure and intensity change. However, uncertainties in the parameterization of the planetary boundary layer (PBL) under high-wind conditions remain challenging, mostly due to limited observations. This study presents and evaluates a framework of numerical simulation that can be used for a small-domain [O(5)-km] large-eddy simulation (LES) and single-column modeling (SCM) to study the TC boundary layer. The framework builds upon a previous study that uses a few input parameters to represent the TC vortex and adds a simple nudging term for temperature and moisture to account for the complex thermodynamic processes in TCs. The reference thermodynamic profiles at different wind speeds are retrieved from a composite analysis of dropsonde observations of mature hurricanes. Results from LES show that most of the turbulence kinetic energy and vertical momentum flux is associated with resolved processes when horizontal grid spacing is O(10) m. Comparison to observations of turbulence variables such as momentum flux, effective eddy viscosity, and turbulence length scale show that LES produces reasonable results but highlight areas where further observations are necessary. LES results also demonstrate that compared to a classic Ekman-type boundary layer, the TC boundary layer is shallower, develops steady conditions much quicker, and exhibits stronger wind speed near the surface. The utility of this framework is further highlighted by evaluating a first-order PBL parameterization, suggesting that an asymptotic turbulence length scale of 40 m produces a good match to LES results.
Abstract
Boundary layer turbulent processes affect tropical cyclone (TC) structure and intensity change. However, uncertainties in the parameterization of the planetary boundary layer (PBL) under high-wind conditions remain challenging, mostly due to limited observations. This study presents and evaluates a framework of numerical simulation that can be used for a small-domain [O(5)-km] large-eddy simulation (LES) and single-column modeling (SCM) to study the TC boundary layer. The framework builds upon a previous study that uses a few input parameters to represent the TC vortex and adds a simple nudging term for temperature and moisture to account for the complex thermodynamic processes in TCs. The reference thermodynamic profiles at different wind speeds are retrieved from a composite analysis of dropsonde observations of mature hurricanes. Results from LES show that most of the turbulence kinetic energy and vertical momentum flux is associated with resolved processes when horizontal grid spacing is O(10) m. Comparison to observations of turbulence variables such as momentum flux, effective eddy viscosity, and turbulence length scale show that LES produces reasonable results but highlight areas where further observations are necessary. LES results also demonstrate that compared to a classic Ekman-type boundary layer, the TC boundary layer is shallower, develops steady conditions much quicker, and exhibits stronger wind speed near the surface. The utility of this framework is further highlighted by evaluating a first-order PBL parameterization, suggesting that an asymptotic turbulence length scale of 40 m produces a good match to LES results.