Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Haflidi Jonsson x
  • Journal of Atmospheric and Oceanic Technology x
  • Refine by Access: All Content x
Clear All Modify Search
R. Paul Lawson
Darren O’Connor
Patrick Zmarzly
Kim Weaver
Brad Baker
Qixu Mo
, and
Haflidi Jonsson


The design, laboratory calibrations, and flight tests of a new optical imaging instrument, the two-dimensional stereo (2D-S) probe, are presented. Two orthogonal laser beams cross in the middle of the sample volume. Custom, high-speed, 128-photodiode linear arrays and electronics produce shadowgraph images with true 10-μm pixel resolution at aircraft speeds up to 250 m s−1. An overlap region is defined by the two laser beams, improving the sample volume boundaries and sizing of small (<∼100 μm) particles, compared to conventional optical array probes. The stereo views of particles in the overlap region can also improve determination of three-dimensional properties of some particles.

Data collected by three research aircraft are examined and discussed. The 2D-S sees fine details of ice crystals and small water drops coexisting in mixed-phase cloud. Measurements in warm cumuli collected by the NCAR C-130 during the Rain in Cumulus over the Ocean (RICO) project provide a test bed to compare the 2D-S with 2D cloud (2D-C) and 260X probes. The 2D-S sees thousands of cloud drops <∼150 μm when the 2D-C and 260X probes see few or none. The data suggest that particle images and size distributions ranging from 25 to ∼150 μm and collected at airspeeds >100 m s−1 by the 2D-C and 260X probes are probably (erroneously) generated from out-of-focus particles. Development of the 2D-S is in its infancy, and much work needs to be done to quantify its performance and generate software to analyze data.

Full access