Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Hagen Telg x
  • Refine by Access: All Content x
Clear All Modify Search
Gijs de Boer
,
Mark Ivey
,
Beat Schmid
,
Dale Lawrence
,
Darielle Dexheimer
,
Fan Mei
,
John Hubbe
,
Albert Bendure
,
Jasper Hardesty
,
Matthew D. Shupe
,
Allison McComiskey
,
Hagen Telg
,
Carl Schmitt
,
Sergey Y. Matrosov
,
Ian Brooks
,
Jessie Creamean
,
Amy Solomon
,
David D. Turner
,
Christopher Williams
,
Maximilian Maahn
,
Brian Argrow
,
Scott Palo
,
Charles N. Long
,
Ru-Shan Gao
, and
James Mather

Abstract

Thorough understanding of aerosols, clouds, boundary layer structure, and radiation is required to improve the representation of the Arctic atmosphere in weather forecasting and climate models. To develop such understanding, new perspectives are needed to provide details on the vertical structure and spatial variability of key atmospheric properties, along with information over difficult-to-reach surfaces such as newly forming sea ice. Over the last three years, the U.S. Department of Energy (DOE) has supported various flight campaigns using unmanned aircraft systems [UASs, also known as unmanned aerial vehicles (UAVs) and drones] and tethered balloon systems (TBSs) at Oliktok Point, Alaska. These activities have featured in situ measurements of the thermodynamic state, turbulence, radiation, aerosol properties, cloud microphysics, and turbulent fluxes to provide a detailed characterization of the lower atmosphere. Alongside a suite of active and passive ground-based sensors and radiosondes deployed by the DOE Atmospheric Radiation Measurement (ARM) program through the third ARM Mobile Facility (AMF-3), these flight activities demonstrate the ability of such platforms to provide critically needed information. In addition to providing new and unique datasets, lessons learned during initial campaigns have assisted in the development of an exciting new community resource.

Full access