Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Haijun Yang x
  • Journal of Physical Oceanography x
  • Refine by Access: All Content x
Clear All Modify Search
Haijun Yang and Zhengyu Liu

Abstract

The full spectrum of basin modes in a tropical–extratropical basin is studied comprehensively in a linear shallow-water system. Two sets of least-damped basin modes are identified. At the low-frequency end is the planetary wave basin mode, whose period is determined by the cross-basin time of the planetary wave on the poleward boundary of the basin, consistent with recent theories. At the higher-frequency end is the Kelvin wave basin mode, whose period is determined by the around-basin traveling time of the Kelvin wave. Sensitivity experiments are also performed on the eigenvalue problem to study the dynamics of these basin modes. It is found that the period of the planetary wave basin mode is determined by an effective basin boundary that is always at a latitude no higher than the geometric basin boundary. The effective poleward boundary is located at the most poleward latitude where the planetary wave can cross the entire basin. It is also found that the Kelvin wave basin modes are vulnerable to boundary perturbations. If the coastal Kelvin wave propagation is suppressed along the basin boundary, the Kelvin wave basin mode would degenerate to the equatorial basin mode that has been obtained theoretically from the long-wave approximation.

Full access
M. Stephens, Zhengyu Liu, and Haijun Yang

Abstract

The evolution of decadal subduction temperature anomalies in the subtropical North Pacific is studied using a simple and a complex ocean model. It is found that the amplitude of the temperature anomaly decays faster than a passive tracer by about 30%–50%. The faster decay is caused by the divergence of group velocity of the subduction planetary wave, which is contributed to, significantly, by the divergent Sverdrup flow in the subtropical gyre. The temperature anomaly also seems to propagate southward slower than the passive tracer, or mean ventilation flow. This occurs because the mean potential vorticity gradient in the ventilated zone is directed eastward; the associated general beta effect produces a northward propagation for the temperature anomaly, partially canceling the southward advection by the ventilation flow.

Full access
Haijun Yang, Zhengyu Liu, and Hui Wang

Abstract

The equatorial thermocline variability in the Pacific in response to the extratropical thermal and wind forcings is investigated with an ocean general circulation model [Modular Ocean Model, version 3 (MOM3)]. Sensitivity experiments show that the extratropical wind forcing and thermal forcing contribute equally to the equatorial variability. The wind-induced response is attributed to the off-equatorial wind within 30° of the equator; the thermal-induced response can be traced to higher latitudes. The thermal forcing affects the equator mainly through the equatorward transport of the perturbation temperature by mean subduction flow; the wind forcing affects the equator by changing the strength of meridional overturning circulations. It is also found that the Southern Hemisphere contributes more to the equatorial variability than the Northern Hemisphere under both external forcings.

Full access
Zhengyu Liu, Haijun Yang, and Qinyu Liu

Abstract

Dynamics of the seasonal cycle of sea surface height (SSH) in the South China Sea (SCS) are studied using observations as well as numerical and theoretical models. Seasonal variability of the SCS is interpreted in light of large-scale dynamics and Rossby waves. It is found that the seasonal cycle over most of the SCS basin is determined predominantly by the regional ocean dynamics within the SCS. The SSH variability is shown to be forced mainly by surface wind curl on baroclinic Rossby waves. Annual baroclinic Rossby waves cross the basin in less than a few months, leaving the upper ocean in a quasi-steady Sverdrup balance. An anomalous cyclonic (anticyclonic) gyre is generated in winter (summer) by the anomalous cyclonic (anticyclonic) wind curl that is associated with the northeasterly (southwesterly) monsoon. In addition, surface heat flux acts to enhance the wind-generated variability. The winter surface cooling (warming) cools (warms) the mixed layer especially in the central SCS, reducing (increasing) the SSH.

Full access