Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Hong Wang x
  • Journal of Atmospheric and Oceanic Technology x
  • Refine by Access: All Content x
Clear All Modify Search
Hangzhou Wang
,
Ying Chen
,
Hong Song
, and
Samuel R. Laney

Abstract

A fiber optic–based spectrometry system was developed to enable automated, long-term measurements of spectral irradiance in sea ice environments. This system utilizes a single spectrometer module that measures the irradiance transmitted by multiple optical fibers, each coupled to the input fiber of the module via a mechanical rotary multiplexer. Small custom-printed optical diffusers, fixed to the input end of each fiber, allow these probes to be frozen into ice auger holes as small as 5 cm in diameter. Temperature-dependent biases in the spectrometer module and associated electronics were examined down to −40°C using an environmental chamber to identify any artifacts that might arise when operating these electronic and optical components below their vendor-defined lower temperature limits. The optical performance of the entire system was assessed by freezing multiple fiber probes in a 1.2-m-tall ice column, illuminating from above with a light source, and measuring spectral irradiance distributions at different depths within the ice column. Results indicated that the radiometric sensitivity of this fiber-based system is comparable to that of commercially available oceanographic spectroradiometers.

Full access
Qiong Wu
,
Hong-Qing Wang
,
Yin-Jing Lin
,
Yi-Zhou Zhuang
, and
Yan Zhang

Abstract

An optical flow algorithm based on polynomial expansion (OFAPE) was used to derive atmospheric motion vectors (AMVs) from geostationary satellite images. In OFAPE, there are two parameters that can affect the AMV results: the sizes of the expansion window and optimization window. They should be determined according to the temporal interval and spatial resolution of satellite images. A helpful experiment was conducted for selecting those sizes. The limitations of window sizes can cause loss of strong wind speed, and an image-pyramid scheme was used to overcome this problem. Determining the heights of AMVs for semitransparent cloud pixels (STCPs) is challenging work in AMV derivation. In this study, two-dimensional histograms (H2Ds) between infrared brightness temperatures (6.7- and 10.8-μm channels) formed from a long time series of cloud images were used to identify the STCPs and to estimate their actual temperatures/heights. The results obtained from H2Ds were contrasted with CloudSat radar reflectivity and CALIPSO cloud-feature mask data. Finally, in order to verify the algorithm adaptability, three-month AMVs (JJA 2013) were calculated and compared with the wind fields of ERA data and the NOAA/ESRL radiosonde observations in three aspects: speed, direction, and vector difference.

Full access
Richard A. Frey
,
Steven A. Ackerman
,
Yinghui Liu
,
Kathleen I. Strabala
,
Hong Zhang
,
Jeffrey R. Key
, and
Xuangi Wang

Abstract

Significant improvements have been made to the Moderate Resolution Imaging Spectroradiometer (MODIS) cloud mask (MOD35 and MYD35) for Collection 5 reprocessing and forward stream data production. Most of the modifications are realized for nighttime scenes where polar and oceanic regions will see marked improvement. For polar night scenes, two new spectral tests using the 7.2-μm water vapor absorption band have been added as well as updates to the 3.9–12- and 11–12-μm cloud tests. More non-MODIS ancillary input data have been added. Land and sea surface temperature maps provide crucial information for mid- and low-level cloud detection and lessen dependence on ocean brightness temperature variability tests. Sun-glint areas are also improved by use of sea surface temperatures to aid in resolving observations with conflicting cloud versus clear-sky signals, where visible and near-infrared (NIR) reflectances are high, but infrared brightness temperatures are relatively warm. Day and night Arctic cloud frequency results are compared to those created by the Advanced Very High Resolution Radiometer (AVHRR) Polar Pathfinder-Extended (APP-X) algorithm. Day versus night sea surface temperatures derived from MODIS radiances and using only the MODIS cloud mask for cloud screening are contrasted. Frequencies of cloud from sun-glint regions are shown as a function of sun-glint angle to gain a sense of cloud mask quality in those regions. Continuing validation activities are described in Part II of this paper.

Full access