Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Hong Wang x
  • Weather and Forecasting x
  • Refine by Access: All Content x
Clear All Modify Search
Jongil Han
,
Weiguo Wang
,
Young C. Kwon
,
Song-You Hong
,
Vijay Tallapragada
, and
Fanglin Yang

Abstract

The current operational NCEP Global Forecast System (GFS) cumulus convection schemes are updated with a scale-aware parameterization where the cloud mass flux decreases with increasing grid resolution. The ratio of advective time to convective turnover time is also taken into account for the scale-aware parameterization. In addition, the present deep cumulus convection closure using the quasi-equilibrium assumption is no longer used for grid sizes smaller than a threshold value. For the shallow cumulus convection scheme, the cloud-base mass flux is modified to be given by a function of mean updraft velocity. A simple aerosol-aware parameterization where rain conversion in the convective updraft is modified by aerosol number concentration is also included in the update. Along with the scale- and aerosol-aware parameterizations, more changes are made to the schemes. The cloud-base mass-flux computation in the deep convection scheme is modified to use convective turnover time as the convective adjustment time scale. The rain conversion rate is modified to decrease with decreasing air temperature above the freezing level. Convective inhibition in the subcloud layer is used as an additional trigger condition. Convective cloudiness is enhanced by considering suspended cloud condensate in the updraft. The lateral entrainment in the deep convection scheme is also enhanced to more strongly suppress convection in a drier environment. The updated NCEP GFS cumulus convection schemes display significant improvements especially in the summertime continental U.S. precipitation forecasts.

Full access
Mei Hong
,
Dong Wang
,
Ren Zhang
,
Xi Chen
,
Jing-Jing Ge
, and
Dandan Yu

Abstract

Abnormal activity of the western Pacific subtropical high (WPSH) may result in extreme weather events in East Asia. However, because the relationship between the WPSH and other components of the East Asian summer monsoon (EASM) system is unknown, it is still difficult to forecast such abnormal activity. The delay-relevant method is used to study 2010 data for abnormal weather and it is concluded that the Indian monsoon latent heat flux, the Somali low-level jet, and the Tibetan high activity index can significantly affect anomalies in the WPSH in the EASM system. By combining genetic algorithms and statistical–dynamical reconstruction theory, a nonlinear statistical–dynamical model of the WPSH and these three influencing factors was objectively reconstructed from actual 2010 data and a dynamically extended forecasting experiment was carried out. To further test the forecasting performance of the reconstructed model, further experiments using data from nine abnormal WPSH years and eight normal WPSH years were performed for comparison. All the results suggest that the forecasts of the subtropical high area index, the Indian monsoon latent heat flux, the Somali low-level jet, and the Tibetan high activity index all have good performance in the short and medium terms (<25 days). Not only is the forecasting trend accurate, but the mean absolute percentage error is ≤9%. This work suggests new areas of research into the association between the WPSH and EASM systems and provides a new method for the prediction of the WPSH area index.

Full access
Chi–Sann Liou
,
Jen–Her Chen
,
Chuen–Teyr Terng
,
Feng–Ju Wang
,
Chin–Tzu Fong
,
Thomas E. Rosmond
,
Hong–Chi Kuo
,
Chih–Hui Shiao
, and
Ming–Dean Cheng

Abstract

The global forecast system (GFS), which started its operation in 1988 at the Central Weather Bureau in Taiwan, has been upgraded to incorporate better numerical methods and more complete parameterization schemes. The second-generation GFS uses multivariate optimum interpolation analysis and incremental nonlinear normal-mode initialization to initialize the forecast model. The forecast model is a global primitive equation model with a resolution of 18 sigma levels in the vertical and 79 waves of triangular truncation in the horizontal. The forecast model includes a 1.5-order eddy mixing parameterization, a gravity wave drag parameterization, a shallow convection parameterization, a relaxed version of Arakawa–Schubert cumulus parameterization, grid-scale condensation calculation, and longwave and shortwave radiative transfer calculations with consideration of fractional clouds. The performance of the second-generation GFS is significantly better than the first-generation GFS. For two 3-month periods in winter 1995/96 and summer 1996, the second-generation GFS provided forecasters with 5-day forecasts where the averaged 500-mb height anomaly correlation coefficients for the Northern Hemisphere were greater than 0.6.

Observational data available to the GFS are much less than those at other numerical weather prediction centers, especially in the Tropics and Southern Hemisphere. The GRID messages of 5° resolution, ECMWF 24-h forecast 500-mb height and 850- and 200-mb wind fields available once a day on the Global Telecommunications System are used as supplemental observations to increase the data coverage for the GFS data assimilation. The supplemental data improve the GFS performance both in the analysis and forecast.

Full access
Ling-Feng Hsiao
,
Xiang-Yu Huang
,
Ying-Hwa Kuo
,
Der-Song Chen
,
Hongli Wang
,
Chin-Cheng Tsai
,
Tien-Chiang Yeh
,
Jing-Shan Hong
,
Chin-Tzu Fong
, and
Cheng-Shang Lee

Abstract

A blending method to merge the NCEP global analysis with the regional analysis from the WRF variational data assimilation system is implemented using a spatial filter for the purpose of initializing the Typhoon WRF (TWRF) Model, which has been in operation at Taiwan’s Central Weather Bureau (CWB) since 2010. The blended analysis is weighted toward the NCEP global analysis for scales greater than the cutoff length of 1200 km, and is weighted toward the WRF regional analysis for length below that. TWRF forecast experiments on 19 typhoons from July to October 2013 over the western North Pacific Ocean show that the large-scale analysis from NCEP GFS is superior to that of the regional analysis, which significantly improves the typhoon track forecasts. On the other hand, the regional WRF analysis provides a well-developed typhoon structure and more accurately captures the influence of the Taiwan topography on the typhoon circulation. As a result, the blended analysis takes advantage of the large-scale analysis from the NCEP global analysis and the detailed mesoscale analysis from the regional WRF analysis. In additional to the improved track forecast, the blended analysis also provides more accurate rainfall forecasts for typhoons affecting Taiwan. Because of the improved performance, the blending method has been implemented in the CWB operational TWRF typhoon prediction system.

Full access