Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Hsin-I Chang x
  • Journal of Applied Meteorology and Climatology x
  • Refine by Access: All Content x
Clear All Modify Search
Jeremy J. Mazon, Christopher L. Castro, David K. Adams, Hsin-I Chang, Carlos M. Carrillo, and John J. Brost


Almost one-half of the annual precipitation in the southwestern United States occurs during the North American monsoon (NAM). Given favorable synoptic-scale conditions, organized monsoon thunderstorms may affect relatively large geographic areas. Through an objective analysis of atmospheric reanalysis and observational data, the dominant synoptic patterns associated with NAM extreme events are determined for the period from 1993 to 2010. Thermodynamically favorable extreme-weather-event days are selected on the basis of atmospheric instability and precipitable water vapor from Tucson, Arizona, rawinsonde data. The atmospheric circulation patterns at 500 hPa associated with the extreme events are objectively characterized using principal component analysis. The first two dominant modes of 500-hPa geopotential-height anomalies of the severe-weather-event days correspond to type-I and type-II severe-weather-event patterns previously subjectively identified by Maddox et al. These patterns reflect a positioning of the monsoon ridge to the north and east or north and west, respectively, from its position in the “Four Corners” region during the period of the climatological maximum of monsoon precipitation from mid-July to mid-August. An hourly radar–gauge precipitation product shows evidence of organized, westward-propagating convection in Arizona during the type-I and type-II severe weather events. This new methodological approach for objectively identifying severe weather events may be easily adapted to inform operational forecasting or analysis of gridded climate data.

Full access
Thang M. Luong, Christopher L. Castro, Hsin-I Chang, Timothy Lahmers, David K. Adams, and Carlos A. Ochoa-Moya


Long-term changes in North American monsoon (NAM) precipitation intensity in the southwestern United States are evaluated through the use of convective-permitting model simulations of objectively identified severe weather events during “historical past” (1950–70) and “present day” (1991–2010) periods. Severe weather events are the days on which the highest atmospheric instability and moisture occur within a long-term regional climate simulation. Simulations of severe weather event days are performed with convective-permitting (2.5 km) grid spacing, and these simulations are compared with available observed precipitation data to evaluate the model performance and to verify any statistically significant model-simulated trends in precipitation. Statistical evaluation of precipitation extremes is performed using a peaks-over-threshold approach with a generalized Pareto distribution. A statistically significant long-term increase in atmospheric moisture and instability is associated with an increase in extreme monsoon precipitation in observations and simulations of severe weather events, corresponding to similar behavior in station-based precipitation observations in the Southwest. Precipitation is becoming more intense within the context of the diurnal cycle of convection. The largest modeled increases in extreme-event precipitation occur in central and southwestern Arizona, where mesoscale convective systems account for a majority of monsoon precipitation and where relatively large modeled increases in precipitable water occur. Therefore, it is concluded that a more favorable thermodynamic environment in the southwestern United States is facilitating stronger organized monsoon convection during at least the last 20 years.

Full access