Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Hyun Mee Kim x
  • Targeted Observations, Data Assimilation, and Tropical Cyclone Predictability x
  • Refine by Access: All Content x
Clear All Modify Search
Hyun Mee Kim
and
Byoung-Joo Jung

Abstract

In this study, the structure and evolution of total energy singular vectors (SVs) of Typhoon Usagi (2007) are evaluated using the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) and its tangent linear and adjoint models with a Lanczos algorithm. Horizontal structures of the initial SVs following the tropical cyclone (TC) evolution suggest that, relatively far from the region of TC recurvature, SVs near the TC center have larger magnitudes than those in the midlatitude trough. The SVs in the midlatitude trough region become dominant as the TC passes by the region of recurvature. Increasing magnitude of the SVs over the midlatitude trough regions is associated with the extratropical transition of the TC. While the SV sensitivities near the TC center are mostly associated with warming in the midtroposphere and inflow toward the TC along the edge of the subtropical high, the SV sensitivities in the midlatitude are located under the upper trough with upshear-tilted structures and associated with strong baroclinicity and frontogenesis in the lower troposphere. Given the results in this study, sensitive regions for adaptive observations of TCs may be different following the TC development stage. Far from the TC recurvature, sensitive regions near TC center may be important. Closer to the TC recurvature, effects of the midlatitude trough become dominant and the vertical structures of the SVs in the midlatitude are basically similar to those of extratropical cyclones.

Full access
Hyun Mee Kim
and
Byoung-Joo Jung

Abstract

In this study, the structures and growth rates of singular vectors (SVs) for Typhoon Usagi were investigated using different moist physics and norms. The fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) and its tangent linear and adjoint models with a Lanczos algorithm were used to calculate SVs over a 36-h period. The moist physics used for linear (i.e., tangent linear and adjoint model) integrations is large-scale precipitation, and the norms used are dry and moist total energy (TE) norms. Overall, moist physics in linear integrations and a moist TE norm increase the growth rates of SVs and cause smaller horizontal structures and vertical distributions closer to the lower boundary. With a dry TE norm, the SV energy distributions show similar (dissimilar) large- (small-) scale horizontal SV structures for experiments, regardless of physics. The SVs with moist linear physics and a moist TE norm have maximum horizontal energy structures near the typhoon center. With a small weighting on the moisture term in the moist TE norm, both the remote and nearby influences on the TC are indicated by the horizontal SV energy distributions. The kinetic energy shows the largest contributions to the vertical SV TE distributions in most of the experiments, except for the largest moisture (potential energy) contributions to the SV TE at the final (initial) time in the moist TE norm (dry and weighted moist TE norms at uppermost levels). In contrast, the SV vorticity distributions show more consistent structures among experiments with different linear physics and norms, implying that, in terms of the rotational component of the wind field, the SVs are not sensitive to the choice of moist physics and norms. Given large-scale precipitation as the linear moist physics, the SV energy structures and growth rate with a moist TE norm show the largest difference when compared with those with other norms.

Full access