Search Results

You are looking at 1 - 9 of 9 items for :

  • Author or Editor: Isaac Ginis x
  • Journal of the Atmospheric Sciences x
  • Refine by Access: All Content x
Clear All Modify Search
Kun Gao
and
Isaac Ginis

Abstract

Horizontal roll vortices, or rolls, are frequently observed in the hurricane boundary layer (HBL). Previous studies suggest that these rolls can be generated by the inflection point instability of the HBL flow. In this study we investigate the formation of rolls due to this mechanism in the axisymmetric HBL using a numerical approach that explicitly resolves rolls. The effects of mean HBL wind and stratification distributions on rolls are evaluated. We identify two important factors of the mean HBL wind that affect the characteristics of rolls. The dynamical HBL height affects the wavelength of rolls, and the magnitude of the mean wind shear affects the growth rate of rolls. As a result, under neutrally stratified HBL, the wavelength of rolls increases with the radius (out of the radius of maximum wind), while the growth rate of rolls decreases. The stratification also plays an important role in the generation of rolls. The stable stratification suppresses the growth of rolls because of the negative work done by the buoyancy force. Nonuniform stratification with a mixed layer has less suppressing effect on rolls. Rolls can trigger internal waves in the stably stratified layer, which have both vertically propagating and decaying properties. We derive analytical solutions for the internal waves, which relate the properties of the internal waves to the boundary layer rolls. We find the properties of the internal waves are affected by the mixed-layer height.

Full access
Kun Gao
and
Isaac Ginis

Abstract

In this study, the authors numerically simulate roll vortices (rolls) generated by the inflection-point instability in the hurricane boundary layer (HBL). The approach is based on embedding a two-dimensional high-resolution single-grid roll-resolving model (SRM) at selected horizontal grid points of an axisymmetric HBL model. The results from a set of idealized experiments indicate that the mixed-layer height is an important factor affecting the magnitude of the roll velocities and the structure of the internal waves triggered in the stably stratified layer above. This study reveals the important difference between the roll-induced cross-roll (nearly radial) and along-roll (nearly azimuthal) momentum fluxes: while the cross-roll momentum flux is well correlated to the cross-roll mean wind shear, the along-roll momentum flux is typically not correlated with the along-roll mean wind shear. Therefore, the commonly used K theory in the boundary layer parameterizations cannot reasonably capture the vertical distribution of the roll-induced along-roll momentum flux. Moreover, the authors find that the rolls induce more significant changes in the mean radial wind profile than in the mean azimuthal wind profile. Specifically, rolls reduce the inflow near surface, enhance the inflow at upper levels, and increase the inflow-layer height. Based on a linear dynamical HBL model, the authors find that the impact of rolls on the mean radial wind profile is essentially due to their redistribution effect on the mean azimuthal momentum in the HBL.

Full access
Kun Gao
and
Isaac Ginis

Abstract

Previous theoretical and numerical studies only focused on the formation of roll vortices (rolls) under a stationary and axisymmetric hurricane. The effect of the asymmetric wind structure induced by the storm movement on the roll characteristics remains unknown. In this study, we present the first attempt to investigate the characteristics of linear-phase rolls under a moving hurricane by embedding a linear two-dimensional (2D) roll-resolving model into a 3D hurricane boundary layer model. It is found that the roll horizontal wavelength under the moving hurricane is largely determined by the radial-shear-layer depth, defined as the thickness of the layer with positive radial wind shear. The horizontal distribution of the roll wavelength resembles the asymmetric pattern of the radial-shear-layer depth. Interestingly, the roll growth rate is not only affected by the radial wind shear magnitude alluded to in previous studies but also by the radial-shear-layer depth. A deeper (shallower) radial shear layer tends to decrease (increase) the roll growth rate. Such an effect is due to the presence of the bottom boundary. The bottom boundary constrains the lower-level roll streamlines and reduces the efficiency of rolls in extracting kinetic energy from the radial shear. This effect is more pronounced under a deeper shear layer, which favors the formation of larger-size rolls. This study improves the understanding of the main factors affecting the structure and growth of rolls and will provide guidance for interpreting the spatial distribution of rolls under realistic hurricanes in observations and high-resolution simulations.

Full access
Weixing Shen
,
Isaac Ginis
, and
Robert E. Tuleya

Abstract

Little is known about the effects of surface water over land on the decay of landfalling hurricanes. This study, using the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory hurricane model, examines the surface temperature changes due to hurricane–land surface water interactions, and their effects on the surface heat fluxes, hurricane structure, and intensity. Different water depths and surface conditions are incorporated for a variety of experiments starting with a hurricane bogus embedded in a uniform easterly mean flow of 5 m s−1.

A salient feature of hurricane–land surface water interaction is the local surface cooling near the hurricane core with the largest cooling behind and on the right side of the hurricane center. Unlike the surface cooling due to hurricane–ocean interaction, the largest cooling in hurricane–land surface water interaction can be much closer to the hurricane core. Without solar radiation during night, the surface evaporation dominates the local surface cooling. This causes a surface temperature contrast between the core area and its environment. During the day, the surface temperature contrast is enhanced due to additional influence from the reduced solar radiation under the core. Related to the local surface cooling, there is a significant reduction of surface evaporation with a near cutoff behind the hurricane center. A layer of half-meter water can noticeably reduce landfall decay although the local surface temperature around the hurricane core region is more than 4°C lower than in its environment. Further experiments indicate that an increase of roughness reduces the surface winds but barely changes the surface temperature and evaporation patterns and their magnitudes since the increase of roughness also increases the efficiency of surface evaporation.

Full access
Il-Ju Moon
,
Isaac Ginis
, and
Tetsu Hara

Abstract

Present parameterizations of air–sea momentum flux at high wind speed, including hurricane wind forcing, are based on extrapolation from field measurements in much weaker wind regimes. They predict monotonic increase of drag coefficient (C d ) with wind speed. Under hurricane wind forcing, the present numerical experiments using a coupled ocean wave and wave boundary layer model show that C d at extreme wind speeds strongly depends on the wave field. Higher, longer, and more developed waves in the right-front quadrant of the storm produce higher sea drag; lower, shorter, and younger waves in the rear-left quadrant produce lower sea drag. Hurricane intensity, translation speed, as well as the asymmetry of wind forcing are major factors that determine the spatial distribution of C d . At high winds above 30 m s−1, the present model predicts a significant reduction of C d and an overall tendency to level off and even decrease with wind speed. This tendency is consistent with recent observational, experimental, and theoretical results at very high wind speeds.

Full access
Isaac Ginis
,
Alexander P. Khain
, and
Elena Morozovsky

Abstract

A model of the atmospheric boundary layer (BL) is presented that explicitly calculates a two-way interaction of the background flow and convective motions. The model is utilized for investigation of the formation of large eddies (roll vortices) and their effects on the structure of the marine boundary layer under conditions resembling those of tropical cyclones. It is shown that two main factors controlling the formation of large eddies are the magnitude of the background wind speed and air humidity, determining the cloud formation and latent heat release. When the wind speed is high enough, a strong vertical wind shear develops in the lower part of the BL, which triggers turbulent mixing and the formation of a mixed layer. As a result, the vertical profiles of velocity, potential temperature, and mixing ratio in the background flow are modified to allow for the development of large eddies via dynamic instability. Latent heat release in clouds was found to be the major energy source of large eddies. The cloud formation depends on the magnitude of air humidity.

The most important manifestation of the effects of large eddies is a significant increase of the near-surface wind speed and evaporation from the sea surface. For strong wind conditions, the increase of the near-surface speed can exceed 10 m s−1 and evaporation from the sea surface can double. These results demonstrate an important role large eddies play in the formation of BL structure in high wind speeds. Inclusion of these effects in the BL parameterizations of tropical cyclone models may potentially lead to substantial improvements in the prediction of storm intensity.

Full access
Kun Gao
,
Isaac Ginis
,
James D. Doyle
, and
Yi Jin

Abstract

In this study, the authors numerically investigate the response of an axisymmetric tropical cyclone (TC) vortex to the vertical fluxes of momentum, heat, and moisture induced by roll vortices (rolls) in the boundary layer. To represent the vertical fluxes induced by rolls, a two-dimensional high-resolution Single-Grid Roll-Resolving Model (SRM) is embedded at multiple horizontal grid points in the mesoscale COAMPS for Tropical Cyclones (COAMPS-TC) model domain. Idealized experiments are conducted with the SRM embedded within 3 times the radius of maximum wind of an axisymmetric TC. The results indicate that the rolls induce changes in the boundary layer wind distribution and cause a moderate (approximately 15%) increase in the TC intensification rate by increasing the boundary layer convergence in the eyewall region and induce more active eyewall convection. The numerical experiments also suggest that the roll-induced tangential momentum flux is most important in contributing to the TC intensification process, and the rolls generated at different radii (within the range considered in this study) all have positive contributions. The results are not qualitatively impacted by the initial TC vortex or the setup of the vertical diffusivity in COAMPS-TC.

Full access
Il-Ju Moon
,
Tetsu Hara
,
Isaac Ginis
,
Stephen E. Belcher
, and
Hendrik L. Tolman

Abstract

The effect of surface waves on air–sea momentum exchange over mature and growing seas is investigated by combining ocean wave models and a wave boundary layer model. The combined model estimates the wind stress by explicitly calculating the wave-induced stress. In the frequency range near the spectral peak, the NOAA/ NCEP surface wave model WAVEWATCH-III is used to estimate the spectra, while the spectra in the equilibrium range are determined by an analytical model. This approach allows for the estimation of the drag coefficient and the equivalent surface roughness for any surface wave fields. Numerical experiments are performed for constant winds from 10 to 45 m s−1 to investigate the effect of mature and growing seas on air–sea momentum exchange. For mature seas, the Charnock coefficient is estimated to be about 0.01 ∼ 0.02 and the drag coefficient increases as wind speed increases, both of which are within the range of previous observational data. With growing seas, results for winds less than 30 m s−1 show that the drag coefficient is larger for younger seas, which is consistent with earlier studies. For winds higher than 30 m s−1, however, results show a different trend; that is, very young waves yield less drag. This is because the wave-induced stress due to very young waves makes a small contribution to the total wind stress in very high wind conditions.

Full access
Robert E. Tuleya
,
Morris Bender
,
Thomas R. Knutson
,
Joseph J. Sirutis
,
Biju Thomas
, and
Isaac Ginis

Abstract

The GFDL hurricane modeling system, initiated in the 1970s, has progressed from a research tool to an operational system over four decades. This system is still in use today in research and operations, and its evolution will be briefly described. This study used an idealized version of the 2014 GFDL model to test its sensitivity across a wide range of three environmental factors that are often identified as key factors in tropical cyclone (TC) evolution: SST, atmospheric stability (upper-air thermal anomalies), and vertical wind shear (westerly through easterly). A wide range of minimum central pressure intensities resulted (905–980 hPa). The results confirm that a scenario (e.g., global warming) in which the upper troposphere warms relative to the surface will have less TC intensification than one with a uniform warming with height. The TC rainfall is also investigated for the SST–stability parameter space. Rainfall increases for combinations of SST increase and increasing stability similar to global warming scenarios, consistent with climate change TC downscaling studies with the GFDL model. The forecast system’s sensitivity to vertical shear was also investigated. The idealized model simulations showed weak disturbances dissipating under strong easterly and westerly shear of 10 m s−1. A small bias for greater intensity under easterly sheared versus westerly sheared environments was found at lower values of SST. The impact of vertical shear on intensity was different when a strong vortex was used in the simulations. In this case, none of the initial disturbances weakened, and most intensified to some extent.

Full access