Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: J. C. Ma x
  • Journal of the Atmospheric Sciences x
  • Refine by Access: All Content x
Clear All Modify Search
E. Kassianov
,
M. Pekour
,
C. Flynn
,
L. K. Berg
,
J. Beranek
,
A. Zelenyuk
,
C. Zhao
,
L. R. Leung
,
P. L. Ma
,
L. Riihimaki
,
J. D. Fast
,
J. Barnard
,
A. G. Hallar
,
I. B. McCubbin
,
E. W. Eloranta
,
A. McComiskey
, and
P. J. Rasch

Abstract

This work is motivated by previous studies of transatlantic transport of Saharan dust and the observed quasi-static nature of coarse mode aerosol with a volume median diameter (VMD) of approximately 3.5 μm. The authors examine coarse mode contributions from transpacific transport of dust to North American aerosol properties using a dataset collected at the high-elevation Storm Peak Laboratory (SPL) and the nearby Atmospheric Radiation Measurement (ARM) Mobile Facility. Collected ground-based data are complemented by quasi-global model simulations and satellite and ground-based observations. The authors identify a major dust event associated mostly with a transpacific plume (about 65% of near-surface aerosol mass) in which the coarse mode with moderate (~3 μm) VMD is distinct and contributes substantially to total aerosol volume (up to 70%) and scattering (up to 40%). The results demonstrate that the identified plume at the SPL site has a considerable fraction of supermicron particles (VMD ~3 μm) and, thus, suggest that these particles have a fairly invariant behavior despite transpacific transport. If confirmed in additional studies, this invariant behavior may simplify considerably parameterizations for size-dependent processes associated with dust transport and removal.

Full access
Q. S. He
,
C. C. Li
,
J. Z. Ma
,
H. Q. Wang
,
G. M. Shi
,
Z. R. Liang
,
Q. Luan
,
F. H. Geng
, and
X. W. Zhou

Abstract

As part of the Tibet Ozone, Aerosol and Radiation (TOAR) project, a micropulse lidar was operated in Naqu (31.5°N, 92.1°E; 4508 m MSL) on the Tibetan Plateau to observe cirrus clouds continuously from 19 July to 26 August 2011. During the experiment, the time coverage of ice clouds only was 15% in the upper troposphere (above 9.5 km MSL). The cirrus top/bottom altitudes (mean values of 15.6/14.7 km) are comparable to those measured previously at tropical sites but relatively higher than those measured at midlatitude sites. The majority of the cloud layers yielded a lidar ratio between 10 and 40 sr, with a mean value of 28 ± 15 sr, characterized by a bimodal frequency distribution. Subvisible, thin, and opaque cirrus formation was observed in 16%, 34%, and 50% of all cirrus cases, respectively. A mean cirrus optical depth of 0.33 was observed over the Tibetan Plateau, slightly higher than those in the subtropics and tropics. With decreasing temperature, the lidar ratio increased slightly, whereas the mean extinction coefficient decreased significantly. The occurrence of clouds is highly correlated with the outgoing longwave radiation and the strong cold perturbations in the upper troposphere. Deep convective activity and Rossby waves are important dynamical processes that control cirrus variations over the Tibetan Plateau, where both anvil cirrus outflowing from convective cumulonimbus clouds and large-scale strong cold perturbations in the upper troposphere should play an important role in cirrus formation.

Full access
Stephen D. Eckermann
,
Dave Broutman
,
Jun Ma
,
James D. Doyle
,
Pierre-Dominique Pautet
,
Michael J. Taylor
,
Katrina Bossert
,
Bifford P. Williams
,
David C. Fritts
, and
Ronald B. Smith

Abstract

On 14 July 2014 during the Deep Propagating Gravity Wave Experiment (DEEPWAVE), aircraft remote sensing instruments detected large-amplitude gravity wave oscillations within mesospheric airglow and sodium layers at altitudes z ~ 78–83 km downstream of the Auckland Islands, located ~1000 km south of Christchurch, New Zealand. A high-altitude reanalysis and a three-dimensional Fourier gravity wave model are used to investigate the dynamics of this event. At 0700 UTC when the first observations were made, surface flow across the islands’ terrain generated linear three-dimensional wave fields that propagated rapidly to z ~ 78 km, where intense breaking occurred in a narrow layer beneath a zero-wind region at z ~ 83 km. In the following hours, the altitude of weak winds descended under the influence of a large-amplitude migrating semidiurnal tide, leading to intense breaking of these wave fields in subsequent observations starting at 1000 UTC. The linear Fourier model constrained by upstream reanalysis reproduces the salient aspects of observed wave fields, including horizontal wavelengths, phase orientations, temperature and vertical displacement amplitudes, heights and locations of incipient wave breaking, and momentum fluxes. Wave breaking has huge effects on local circulations, with inferred layer-averaged westward flow accelerations of ~350 m s−1 h−1 and dynamical heating rates of ~8 K h−1, supporting recent speculation of important impacts of orographic gravity waves from subantarctic islands on the mean circulation and climate of the middle atmosphere during austral winter.

Full access