Search Results
You are looking at 1 - 1 of 1 items for :
- Author or Editor: J. D. Jean-Paul Pinard x
- Article x
- Refine by Access: All Content x
Abstract
Katul and Chang recently compared the performance of two second-order closure models with observations of wind and turbulence in the Duke Forest canopy, noting that such models “alleviate some of the theoretical objections to first-order closure.” This paper demonstrates that, notwithstanding those (valid) theoretical objections, Duke Forest wind simulations of comparable quality can be obtained using a first-order closure, namely, eddy viscosity K ∝ λ
Abstract
Katul and Chang recently compared the performance of two second-order closure models with observations of wind and turbulence in the Duke Forest canopy, noting that such models “alleviate some of the theoretical objections to first-order closure.” This paper demonstrates that, notwithstanding those (valid) theoretical objections, Duke Forest wind simulations of comparable quality can be obtained using a first-order closure, namely, eddy viscosity K ∝ λ