Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: J. R. Miller Jr. x
  • Journal of Applied Meteorology and Climatology x
  • Refine by Access: All Content x
Clear All Modify Search
A. S. Dennis, J. R. Miller Jr., D. E. Cain, and R. L. Schwaller

Abstract

Rainfall data collected at 67 gages in a 2750 mi2 target area during a four-year randomized cloud seeding experiment in North Dakota have been stratified in a variety of ways and subjected to several kinds of statistical tests. Some stratifications related to cloud model predictions were possible for only the last two years when a rawinsonde station was operated as part of the project. Monte Carlo experiments simulating 500 reruns of the four-year experiment have been used to establish significance levels for the tests within each data stratification.

The analysis provides significant evidence that seeding convective clouds on a determinate set of days leads to 1) an increase in the frequency of rainfall events at the individual target gages, 2) an increase in the average rainfall recorded per rainfall event, and 3) an increase in total rainfall on the target. The set of days to which this evidence applies is those days with dynamic seedability; that is, days for which a cloud model predicted an increase in cloud top height under the influence of silver iodide seeding. Rainfall observations on days when the cloud model predicted no increase in cloud height show no significant differences between seed and no-seed days.

The possibility of bias has been checked by comparing the frequencies of wet and dry days and the averages of several meteorological variables for seed and no-seed days within each stratification, by cross-checking the stratifications, and by comparing rainfall on seed and no-seed days over an area of roughly 50,000 square miles surrounding the target area. There is no obvious bias to account for the significant differences between seed and no-seed days with dynamic seedability.

It is tentatively concluded that dynamic effects, including rainfall increases, were produced by light to moderate silver iodide seeding from below cloud base. The potential rainfall increase resulting from seeding below selected clouds on days with dynamic seedability is estimated at one inch per growing season.

Full access
J. R. Miller Jr., E. I. Boyd, R. A. Schleusener, and A. S. Dennis

Abstract

Four seasons of hail data were gathered on a randomized cloud seeding project aimed at reducing hail damage and increasing rainfall in western North Dakota. Hail on seed days was generally less severe than on no-seed days. Statistical tests of data from passive hail indicators do not permit rejection of the null hypothesis at the 90% confidence level, but application of rank tests to crop-hail insurance loss data indicates that the seeding reduced crop damage from hail.Post-analyses of related data indicate that 1) the ratio of rainfall amount to hail energy was greater for seed days than no-seed days, and 2) radar characteristics of seeded storms differ from those of unseeded storms. In addition, case studies of 34 storms indicate that damaging hail was usually suppressed when their updraft areas were seeded continuously.

Full access
Paul W. Mielke Jr., Kenneth J. Berry, Arnett S. Dennis, Paul L. Smith, James R. Miller Jr., and Bernard A. Silverman

Abstract

Results of statistical analyses for HIPLEX-1, a randomized cloud seeding experiment, are presented. The analyses are based principally on multi-response permutation procedures (MRPP) as specified before the HIPLEX-1 experiment was initiated. Even though the sample sizes are very small, due in part to the premature termination of this experiment, the three primary response variables measured in the first five minutes following treatment indicate pronounced differences in the development of ice crystals between nonseeded and seeded events. However, the response variables measured more than five minutes after treatment generally do not indicate obvious differences in the subsequent development of precipitation between nonseeded and seeded events. This lack of difference is a possible consequence of 1) lack of a seeding effect, 2) inadequacies in the physical hypothesis, or 3) the small sample sizes. Consequently, only the initial steps in the HIPLEX-1 physical hypothesis could be confirmed in this evaluation of the experiment.

Full access
Paul L. Smith, Arnett S. Dennis, Bernard A. Silverman, Arlin B. Super, Edmond W. Holroyd III, William A. Cooper, Paul W. Mielke Jr., Kenneth J. Berry, Harold D. Orville, and James R. Miller Jr.

Abstract

The design and conduct of HIPLEX-1, a randomized seeding experiment carried out on small cumulus congestus clouds in eastern Montana, are outlined. The seeding agent was dry ice, introduced in an effort to produce microphysical effects, especially the earlier formation of precipitation in the seeded clouds. The earlier formation was expected to increase both the probability and the amount of precipitation from those small clouds with short lifetimes. The experimental unit selection procedure, treatment and randomization procedures, the physical hypothesis, measurement procedures and the response variables defined for the experiment are discussed. Procedures used to calculate the response variables from aircraft and radar measurements are summarized and the values of those variables for the 20 HIPLEX-1 test cases from 1979 and 1980 are tabulated.

Full access