Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: J.C. Wilson x
  • Journal of Applied Meteorology and Climatology x
  • Refine by Access: All Content x
Clear All Modify Search
Alan J. Cimorelli
,
Steven G. Perry
,
Akula Venkatram
,
Jeffrey C. Weil
,
Robert J. Paine
,
Robert B. Wilson
,
Russell F. Lee
,
Warren D. Peters
, and
Roger W. Brode

Abstract

The formulation of the American Meteorological Society (AMS) and U.S. Environmental Protection Agency (EPA) Regulatory Model (AERMOD) Improvement Committee’s applied air dispersion model is described. This is the first of two articles describing the model and its performance. Part I includes AERMOD’s characterization of the boundary layer with computation of the Monin–Obukhov length, surface friction velocity, surface roughness length, sensible heat flux, convective scaling velocity, and both the shear- and convection-driven mixing heights. These parameters are used in conjunction with meteorological measurements to characterize the vertical structure of the wind, temperature, and turbulence. AERMOD’s method for considering both the vertical inhomogeneity of the meteorological characteristics and the influence of terrain are explained. The model’s concentration estimates are based on a steady-state plume approach with significant improvements over commonly applied regulatory dispersion models. Complex terrain influences are provided by combining a horizontal plume state and a terrain-following state. Dispersion algorithms are specified for convective and stable conditions, urban and rural areas, and in the influence of buildings and other structures. Part II goes on to describe the performance of AERMOD against 17 field study databases.

Full access
Steven G. Perry
,
Alan J. Cimorelli
,
Robert J. Paine
,
Roger W. Brode
,
Jeffrey C. Weil
,
Akula Venkatram
,
Robert B. Wilson
,
Russell F. Lee
, and
Warren D. Peters

Abstract

The performance of the American Meteorological Society (AMS) and U.S. Environmental Protection Agency (EPA) Regulatory Model (AERMOD) Improvement Committee’s applied air dispersion model against 17 field study databases is described. AERMOD is a steady-state plume model with significant improvements over commonly applied regulatory models. The databases are characterized, and the performance measures are described. Emphasis is placed on statistics that demonstrate the model’s abilities to reproduce the upper end of the concentration distribution. This is most important for applied regulatory modeling. The field measurements are characterized by flat and complex terrain, urban and rural conditions, and elevated and surface releases with and without building wake effects. As is indicated by comparisons of modeled and observed concentration distributions, with few exceptions AERMOD’s performance is superior to that of the other applied models tested. This is the second of two articles, with the first describing the model formulations.

Full access