Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: J.C. Wilson x
  • Weather and Forecasting x
  • Refine by Access: All Content x
Clear All Modify Search
C. Mueller
,
T. Saxen
,
R. Roberts
,
J. Wilson
,
T. Betancourt
,
S. Dettling
,
N. Oien
, and
J. Yee

Abstract

The Auto-Nowcast System (ANC), a software system that produces time- and space-specific, routine (every 5 min) short-term (0–1 h) nowcasts of storm location, is presented. A primary component of ANC is its ability to identify and characterize boundary layer convergence lines. Boundary layer information is used along with storm and cloud characteristics to augment extrapolation with nowcasts of storm initiation, growth, and dissipation. A fuzzy logic routine is used to combine predictor fields that are based on observations (radar, satellite, sounding, mesonet, and profiler), a numerical boundary layer model and its adjoint, forecaster input, and feature detection algorithms. The ANC methodology is illustrated using nowcasts of storm initiation, growth, and dissipation. Statistical verification shows that ANC is able to routinely improve over extrapolation and persistence.

Full access
C. E. Pierce
,
E. Ebert
,
A. W. Seed
,
M. Sleigh
,
C. G. Collier
,
N. I. Fox
,
N. Donaldson
,
J. W. Wilson
,
R. Roberts
, and
C. K. Mueller

Abstract

Statistical and case study–oriented comparisons of the quantitative precipitation nowcasting (QPN) schemes demonstrated during the first World Weather Research Programme (WWRP) Forecast Demonstration Project (FDP), held in Sydney, Australia, during 2000, served to confirm many of the earlier reported findings regarding QPN algorithm design and performance. With a few notable exceptions, nowcasting algorithms based upon the linear extrapolation of observed precipitation motion (Lagrangian persistence) were generally superior to more sophisticated, nonlinear nowcasting methods. Centroid trackers [Thunderstorm Identification, Tracking, Analysis and Nowcasting System (TITAN)] and pattern matching extrapolators using multiple vectors (Auto-nowcaster and Nimrod) were most reliable in convective scenarios. During widespread, stratiform rain events, the pattern matching extrapolators were superior to centroid trackers and wind advection techniques (Gandolf, Nimrod).

There is some limited case study and statistical evidence from the FDP to support the use of more sophisticated, nonlinear QPN algorithms. In a companion paper in this issue, Wilson et al. demonstrate the advantages of combining linear extrapolation with algorithms designed to predict convective initiation, growth, and decay in the Auto-nowcaster. Ebert et al. show that the application of a nonlinear scheme [Spectral Prognosis (S-PROG)] designed to smooth precipitation features at a rate consistent with their observed temporal persistence tends to produce a nowcast that is superior to Lagrangian persistence in terms of rms error. However, the value of this approach in severe weather forecasting is called into question due to the rapid smoothing of high-intensity precipitation features.

Full access
Pamela L. Heinselman
,
Patrick C. Burke
,
Louis J. Wicker
,
Adam J. Clark
,
John S. Kain
,
Jidong Gao
,
Nusrat Yussouf
,
Thomas A. Jones
,
Patrick S. Skinner
,
Corey K. Potvin
,
Katie A. Wilson
,
Burkely T. Gallo
,
Montgomery L. Flora
,
Joshua Martin
,
Gerry Creager
,
Kent H. Knopfmeier
,
Yunheng Wang
,
Brian C. Matilla
,
David C. Dowell
,
Edward R. Mansell
,
Brett Roberts
,
Kimberly A. Hoogewind
,
Derek R. Stratman
,
Jorge Guerra
,
Anthony E. Reinhart
,
Christopher A. Kerr
, and
William Miller

Abstract

In 2009, advancements in NWP and computing power inspired a vision to advance hazardous weather warnings from a warn-on-detection to a warn-on-forecast paradigm. This vision would require not only the prediction of individual thunderstorms and their attributes but the likelihood of their occurrence in time and space. During the last decade, the warn-on-forecast research team at the NOAA National Severe Storms Laboratory met this challenge through the research and development of 1) an ensemble of high-resolution convection-allowing models; 2) ensemble- and variational-based assimilation of weather radar, satellite, and conventional observations; and 3) unique postprocessing and verification techniques, culminating in the experimental Warn-on-Forecast System (WoFS). Since 2017, we have directly engaged users in the testing, evaluation, and visualization of this system to ensure that WoFS guidance is usable and useful to operational forecasters at NOAA national centers and local offices responsible for forecasting severe weather, tornadoes, and flash floods across the watch-to-warning continuum. Although an experimental WoFS is now a reality, we close by discussing many of the exciting opportunities remaining, including folding this system into the Unified Forecast System, transitioning WoFS into NWS operations, and pursuing next-decade science goals for further advancing storm-scale prediction.

Significance Statement

The purpose of this research is to develop an experimental prediction system that forecasts the probability for severe weather hazards associated with individual thunderstorms up to 6 h in advance. This capability is important because some people and organizations, like those living in mobile homes, caring for patients in hospitals, or managing large outdoor events, require extended lead time to protect themselves and others from potential severe weather hazards. Our results demonstrate a prediction system that enables forecasters, for the first time, to message probabilistic hazard information associated with individual severe storms between the watch-to-warning time frame within the United States.

Restricted access
John R. Gyakum
,
Marco Carrera
,
Da-Lin Zhang
,
Steve Miller
,
James Caveen
,
Robert Benoit
,
Thomas Black
,
Andrea Buzzi
,
Cliément Chouinard
,
M. Fantini
,
C. Folloni
,
Jack J. Katzfey
,
Ying-Hwa Kuo
,
François Lalaurette
,
Simon Low-Nam
,
Jocelyn Mailhot
,
P. Malguzzi
,
John L. McGregor
,
Masaomi Nakamura
,
Greg Tripoli
, and
Clive Wilson

Abstract

The authors evaluate the performance of current regional models in an intercomparison project for a case of explosive secondary marine cyclogenesis occurring during the Canadian Atlantic Storms Project and the Genesis of Atlantic Lows Experiment of 1986. Several systematic errors are found that have been identified in the refereed literature in prior years. There is a high (low) sea level pressure bias and a cold (warm) tropospheric temperature error in the oceanic (continental) regions. Though individual model participants produce central pressures of the secondary cyclone close to the observed during the final stages of its life cycle, systematically weak systems are simulated during the critical early stages of the cyclogenesis. Additionally, the simulations produce an excessively weak (strong) continental anticyclone (cyclone); implications of these errors are discussed in terms of the secondary cyclogenesis. Little relationship between strong performance in predicting the mass field and skill in predicting a measurable amount of precipitation is found. The bias scores in the precipitation study indicate a tendency for all models to overforecast precipitation. Results for the measurable threshold (0.2 mm) indicate the largest gain in precipitation scores results from increasing the horizontal resolution from 100 to 50 km, with a negligible benefit occurring as a consequence of increasing the resolution from 50 to 25 km. The importance of a horizontal resolution increase from 100 to 50 km is also generally shown for the errors in the mass field. However, little improvement in the prediction of the cyclogenesis is found by increasing the horizontal resolution from 50 to 25 km.

Full access