Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Jack A. Kaye x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
Ghassem Asrar
,
Jack A. Kaye
, and
Pierre Morel

This paper describes the principles adopted by the NASA Earth Science Enterprise in formulating a comprehensive 2002–2010 research strategy for earth system science, and outlines one component of this broad interdisciplinary program, focused on physical climate research. Before embarking upon topical discussions of each element of the program, the authors sketch NASA's overall strategy for climate research and organize the main research thrusts according to a logical progression from documenting climate variability and trends in relevant climate forcing factors, to the investigation of key climate responses and feedback mechanisms, consequences for weather and water resources, and climate prediction issues. The ultimate challenge for NASA's earth system science program, a major contribution to the U.S. Global Change Research Program, is to consolidate scientific findings in the different disciplines into an integrated representation of the coupled atmosphere, ocean, ice, land, and biosphere system. The hallmark of NASA programs is indeed the integration of observations, principally global observation from research and operational satellite and surface-based observation networks, into consistent global datasets to support its scientific research programs and the verification of earth system model predictions against observed phenomena.

Full access
Jessie C. Carman
,
Daniel P. Eleuterio
,
Timothy C. Gallaudet
,
Gerald L. Geernaert
,
Patrick A. Harr
,
Jack A. Kaye
,
David H. McCarren
,
Craig N. McLean
,
Scott A. Sandgathe
,
Frederick Toepfer
, and
Louis W. Uccellini

Abstract

The United States has had three operational numerical weather prediction centers since the Joint Numerical Weather Prediction Unit was closed in 1958. This led to separate paths for U.S. numerical weather prediction, research, technology, and operations, resulting in multiple community calls for better coordination. Since 2006, the three operational organizations—the U.S. Air Force, the U.S. Navy, and the National Weather Service—and, more recently, the Department of Energy, the National Aeronautics and Space Administration, the National Science Foundation, and the National Oceanic and Atmospheric Administration/Office of Oceanic and Atmospheric Research, have been working to increase coordination. This increasingly successful effort has resulted in the establishment of a National Earth System Prediction Capability (National ESPC) office with responsibility to further interagency coordination and collaboration. It has also resulted in sharing of data through an operational global ensemble, common software standards, and model components among the agencies. This article discusses the drivers, the progress, and the future of interagency collaboration.

Full access
Emily L. Schaller
,
J. Ryan Bennett
,
Donald R. Blake
,
Raphael M. Kudela
,
Barry L. Lefer
,
Melissa Yang Martin
,
Dar A. Roberts
,
Richard E. Shetter
,
Bruce A. Tagg
, and
Jack A. Kaye

Abstract

NASA’s Student Airborne Research Program (SARP) has completed 13 years of airborne student research since its inception in 2009. The 8-week summer internship program provides students, typically rising undergraduate seniors, with an opportunity to get hands-on experience in making Earth system measurements using NASA’s airborne science platforms. Students also make complementary surface-based measurements, analyze airborne and surface data in the context of related data (e.g. coincident satellite measurements or prior-year SARP data), and present results to peers, program leadership, agency management, and the community. The program splits its time between the NASA Armstrong flight facility in Palmdale, California, and the University of California, Irvine. It is implemented with participation of faculty advisors (who provide many of the instruments used) and graduate student mentors, under the overall leadership of the NASA Earth Science Division. Disciplinary foci include atmospheric gases and aerosols, ocean biology, and terrestrial ecology using both in situ and remote sensing instruments. Students are also taken on site visits to nearby laboratories and facilities and attend lectures from visiting faculty and NASA agency personnel. The program engages approximately 30 students per year, with overall approximate gender balance. The program has a high rate of STEM retention, and its alumni are actively engaged in graduate and postgraduate programs in Earth system science and other disciplines. A summary of scientific and programmatic outcomes and a description of how the program has evolved will be presented.

Full access
Cynthia Rosenzweig
,
Radley M. Horton
,
Daniel A. Bader
,
Molly E. Brown
,
Russell DeYoung
,
Olga Dominguez
,
Merrilee Fellows
,
Lawrence Friedl
,
William Graham
,
Carlton Hall
,
Sam Higuchi
,
Laura Iraci
,
Gary Jedlovec
,
Jack Kaye
,
Max Loewenstein
,
Thomas Mace
,
Cristina Milesi
,
William Patzert
,
Paul W. Stackhouse Jr.
, and
Kim Toufectis

A partnership between Earth scientists and institutional stewards is helping the National Aeronautics and Space Administration (NASA) prepare for a changing climate and growing climate-related vulnerabilities. An important part of this partnership is an agency-wide Climate Adaptation Science Investigator (CASI) Workgroup. CASI has thus far initiated 1) local workshops to introduce and improve planning for climate risks, 2) analysis of climate data and projections for each NASA Center, 3) climate impact and adaptation toolsets, and 4) Center-specific research and engagement.

Partnering scientists with managers aligns climate expertise with operations, leveraging research capabilities to improve decision-making and to tailor risk assessment at the local level. NASA has begun to institutionalize this ongoing process for climate risk management across the entire agency, and specific adaptation strategies are already being implemented.

A case study from Kennedy Space Center illustrates the CASI and workshop process, highlighting the need to protect launch infrastructure of strategic importance to the United States, as well as critical natural habitat. Unique research capabilities and a culture of risk management at NASA may offer a pathway for other organizations facing climate risks, promoting their resilience as part of community, regional, and national strategies.

Full access