Search Results

You are looking at 1 - 10 of 19 items for :

  • Author or Editor: Jackson Tan x
  • Refine by Access: All Content x
Clear All Modify Search
Jackson Tan
and
Lazaros Oreopoulos

Abstract

The distribution of mesoscale precipitation exhibits diverse patterns: precipitation can be intense but sporadic, or it can be light but widespread. This range of behaviors is a reflection of the different weather systems in the global atmosphere. Using MODIS global cloud regimes as proxies for different atmospheric systems, this study investigates the subgrid precipitation properties within these systems. Taking advantage of the high resolution of Integrated Multisatellite Retrievals for GPM (IMERG; GPM is the Global Precipitation Measurement mission), precipitation values at 0.1° are composited with each cloud regime at 1° grid cells to characterize the regime’s spatial subgrid precipitation properties. The results reveal the diversity of the subgrid precipitation behavior of the atmospheric systems. Organized convection is associated with the highest grid-mean precipitation rates and precipitating fraction, although on average only half the grid is precipitating and there is substantial variability between different occurrences. Summer extratropical storms have the next highest precipitation, driven mainly by moderate precipitation rates over large areas. These systems produce more precipitation than isolated convective systems, for which the lower precipitating fractions balance out the high intensities. Most systems produce heavier precipitation in the afternoon than in the morning. The grid-mean precipitation rate is also found to scale with the fraction of precipitation within the grid in a faster-than-linear relationship for most systems. This study elucidates the precipitation properties within cloud regimes, thus advancing our understanding of the precipitation structures of these atmospheric systems.

Full access
Nayeong Cho
,
Jackson Tan
, and
Lazaros Oreopoulos

Abstract

We present an updated cloud regime (CR) dataset based on Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6.1 cloud products, specifically, joint histograms that partition cloud fraction within distinct combinations of cloud-top pressure and cloud optical thickness ranges. The paper focuses on an edition of the CR dataset derived from our own aggregation of MODIS pixel-level cloud retrievals on an equal-area grid and prespecified 3-h UTC intervals that spatiotemporally match International Satellite Cloud Climatology Project (ISCCP) gridded cloud data. The other edition comes from the 1° daily aggregation provided by standard MODIS Level-3 data, as in previous versions of the MODIS CRs, for easier use with datasets mapped on equal-angle grids. Both editions consist of 11 clusters whose centroids are nearly identical. We provide a physical interpretation of the new CRs and aspects of their climatology that have not been previously examined, such as seasonal and interannual variability of CR frequency of occurrence. We also examine the makeup and precipitation properties of the CRs assisted by independent datasets originating from active observations and provide a first glimpse of how MODIS CRs relate to clouds as seen by ISCCP.

Free access
Jackson Tan
,
Nayeong Cho
,
Lazaros Oreopoulos
, and
Pierre Kirstetter

Abstract

Precipitation retrievals from passive microwave satellite observations form the basis of many widely used precipitation products, but the performance of the retrievals depends on numerous factors such as surface type and precipitation variability. Previous evaluation efforts have identified bias dependence on precipitation regime, which may reflect the influence on retrievals of recurring factors. In this study, the concept of a regime-based evaluation of precipitation from the Goddard profiling (GPROF) algorithm is extended to cloud regimes. Specifically, GPROF V05 precipitation retrievals under four different cloud regimes are evaluated against ground radars over the United States. GPROF is generally able to accurately retrieve the precipitation associated with both organized convection and less organized storms, which collectively produce a substantial fraction of global precipitation. However, precipitation from stratocumulus systems is underestimated over land and overestimated over water. Similarly, precipitation associated with trade cumulus environments is underestimated over land, while biases over water depend on the sensor’s channel configuration. By extending the evaluation to more sensors and suppressed environments, these results complement insights previously obtained from precipitation regimes, thus demonstrating the potential of cloud regimes in categorizing the global atmosphere into discrete systems.

Significance Statement

To understand how the accuracy of satellite precipitation depends on weather conditions, we compare the satellite estimates of precipitation against ground radars in the United States, using cloud regimes as a proxy for different recurring atmospheric systems. Consistent with previous studies, we found that errors in the satellite precipitation vary under different regimes. Satellite precipitation is, reassuringly, more accurate for storm systems that produce intense precipitation. However, in systems that produce weak or isolated precipitation, the errors are larger due to retrieval limitations. These findings highlight the important role of atmospheric states on the accuracy of satellite precipitation and the potential of cloud regimes for categorizing the global atmosphere.

Full access
Jackson Tan
,
Walter A. Petersen
, and
Ali Tokay

Abstract

The comparison of satellite and high-quality, ground-based estimates of precipitation is an important means to assess the confidence in satellite-based algorithms and to provide a benchmark for their continued development and future improvement. To these ends, it is beneficial to identify sources of estimation uncertainty, thereby facilitating a precise understanding of the origins of the problem. This is especially true for new datasets such as the Integrated Multisatellite Retrievals for GPM (IMERG) product, which provides global precipitation gridded at a high resolution using measurements from different sources and techniques. Here, IMERG is evaluated against a dense network of gauges in the mid-Atlantic region of the United States. A novel approach is presented, leveraging ancillary variables in IMERG to attribute the errors to the individual instruments or techniques within the algorithm. As a whole, IMERG exhibits some misses and false alarms for rain detection, while its rain-rate estimates tend to overestimate drizzle and underestimate heavy rain with considerable random error. Tracing the errors to their sources, the most reliable IMERG estimates come from passive microwave satellites, which in turn exhibit a hierarchy of performance. The morphing technique has comparable proficiency with the less skillful satellites, but infrared estimations perform poorly. The approach here demonstrated that, underlying the overall reasonable performance of IMERG, different sources have different reliability, thus enabling both IMERG users and developers to better recognize the uncertainty in the estimate. Future validation efforts are urged to adopt such a categorization to bridge between gridded rainfall and instantaneous satellite estimates.

Full access
Jackson Tan
,
Christian Jakob
, and
Todd P. Lane

Abstract

The use of cloud regimes in identifying tropical convection and the associated large-scale atmospheric properties is investigated. The regimes are derived by applying cluster analysis to satellite retrievals of daytime-averaged frequency distributions of cloud-top pressure and optical thickness within grids of 280 km by 280 km resolution from the International Satellite Cloud Climatology Project between 1983 and 2008. An investigation of atmospheric state variables as a function of cloud regime reveals that the regimes are useful indicators of the archetypal states of the tropical atmosphere ranging from a strongly convecting regime with large stratiform cloudiness to strongly suppressed conditions showing a large coverage with stratocumulus clouds. The convectively active regimes are shown to be moist and unstable with large-scale ascending motion, while convectively suppressed regimes are dry and stable with large-scale descending winds. Importantly, the cloud regimes also represent several transitional states. In particular, the cloud regime approach allows for the identification of the “building blocks” of tropical convection, namely, the regimes dominated by stratiform, deep, and congestus convection. The availability of the daily distribution of these building blocks for more than 20 years opens new avenues for the diagnosis of convective behavior as well as the evaluation of the representation of convection in global and regional models.

Full access
Jackson Tan
,
Walter A. Petersen
,
Pierre-Emmanuel Kirstetter
, and
Yudong Tian

Abstract

The Integrated Multisatellite Retrievals for GPM (IMERG), a global high-resolution gridded precipitation dataset, will enable a wide range of applications, ranging from studies on precipitation characteristics to applications in hydrology to evaluation of weather and climate models. These applications focus on different spatial and temporal scales and thus average the precipitation estimates to coarser resolutions. Such a modification of scale will impact the reliability of IMERG. In this study, the performance of the Final Run of IMERG is evaluated against ground-based measurements as a function of increasing spatial resolution (from 0.1° to 2.5°) and accumulation periods (from 0.5 to 24 h) over a region in the southeastern United States. For ground reference, a product derived from the Multi-Radar/Multi-Sensor suite, a radar- and gauge-based operational precipitation dataset, is used. The TRMM Multisatellite Precipitation Analysis (TMPA) is also included as a benchmark. In general, both IMERG and TMPA improve when scaled up to larger areas and longer time periods, with better identification of rain occurrences and consistent improvements in systematic and random errors of rain rates. Between the two satellite estimates, IMERG is slightly better than TMPA most of the time. These results will inform users on the reliability of IMERG over the scales relevant to their studies.

Full access
Manikandan Rajagopal
,
Edward Zipser
,
George Huffman
,
James Russell
, and
Jackson Tan

Abstract

The Integrated Multisatellite Retrievals for Global Precipitation Measurement Mission (IMERG) is a global precipitation product that uses precipitation retrievals from the virtual constellation of satellites with passive microwave (PMW) sensors, as available. In the absence of PMW observations, IMERG uses a Kalman filter scheme to morph precipitation from one PMW observation to the next. In this study, an analysis of convective systems observed during the Convective Process Experiment (CPEX) suggests that IMERG precipitation depends more strongly on the availability of PMW observations than previously suspected. Following this evidence, we explore systematic biases in IMERG through bulk statistics. In two CPEX case studies, cloud photographs, pilot’s radar, and infrared imagery suggest that IMERG represents the spatial extent of precipitation relatively well when there is a PMW observation but sometimes produces spurious precipitation areas in the absence of PMW observations. Also, considering an observed convective system as a precipitation object in IMERG, the maximum rain rate peaked during PMW overpasses, with lower values between them. Bulk statistics reveal that these biases occur throughout IMERG Version 06. We find that locations and times without PMW observations have a higher frequency of light precipitation rates and a lower frequency of heavy precipitation rates due to retrieval artifacts. These results reveal deficiencies in the IMERG Kalman filter scheme, which have led to the development of the Scheme for Histogram Adjustment with Ranked Precipitation Estimates in the Neighborhood (SHARPEN; described in a companion paper) that will be applied in the next version of IMERG.

Full access
Daeho Jin
,
Lazaros Oreopoulos
,
Dongmin Lee
,
Jackson Tan
, and
Nayeong Cho

Abstract

To better understand cloud–precipitation relationships, we extend the concept of cloud regimes developed from two-dimensional joint histograms of cloud optical thickness and cloud-top pressure from MODIS to include precipitation information. Taking advantage of the high-resolution IMERG precipitation dataset, we derive cloud–precipitation “hybrid” regimes by implementing a k-means clustering algorithm with advanced initialization and objective measures to determine the optimal number of clusters. By expressing the variability of precipitation rates within 1° grid cells as histograms and varying the relative weight of cloud and precipitation information in the clustering algorithm, we obtain several editions of hybrid cloud–precipitation regimes (CPRs) and examine their characteristics. In the deep tropics, when precipitation is weighted weakly, the cloud part centroids of the hybrid regimes resemble their counterparts of cloud-only regimes, but combined clustering tightens the cloud–precipitation relationship by decreasing each regime’s precipitation variability. As precipitation weight progressively increases, the shape of the cloud part centroids becomes blunter, while the precipitation part sharpens. When cloud and precipitation are weighted equally, the CPRs representing high clouds with intermediate to heavy precipitation exhibit distinct enough features in the precipitation parts of the centroids to allow us to project them onto the 30-min IMERG domain. Such a projection overcomes the temporal sparseness of MODIS cloud observations associated with substantial rainfall, suggesting great application potential for convection-focused studies for which characterization of the diurnal cycle is essential.

Full access
Clement Guilloteau
,
Efi Foufoula-Georgiou
,
Pierre Kirstetter
,
Jackson Tan
, and
George J. Huffman

Abstract

Satellite precipitation products, as all quantitative estimates, come with some inherent degree of uncertainty. To associate a quantitative value of the uncertainty to each individual estimate, error modeling is necessary. Most of the error models proposed so far compute the uncertainty as a function of precipitation intensity only, and only at one specific spatiotemporal scale. We propose a spectral error model that accounts for the neighboring space–time dynamics of precipitation into the uncertainty quantification. Systematic distortions of the precipitation signal and random errors are characterized distinctively in every frequency–wavenumber band in the Fourier domain, to accurately characterize error across scales. The systematic distortions are represented as a deterministic space–time linear filtering term. The random errors are represented as a nonstationary additive noise. The spectral error model is applied to the IMERG multisatellite precipitation product, and its parameters are estimated empirically through a system identification approach using the GV-MRMS gauge–radar measurements as reference (“truth”) over the eastern United States. The filtering term is found to be essentially low-pass (attenuating the fine-scale variability). While traditional error models attribute most of the error variance to random errors, it is found here that the systematic filtering term explains 48% of the error variance at the native resolution of IMERG. This fact confirms that, at high resolution, filtering effects in satellite precipitation products cannot be ignored, and that the error cannot be represented as a purely random additive or multiplicative term. An important consequence is that precipitation estimates derived from different sources shall not be expected to automatically have statistically independent errors.

Significance Statement

Satellite precipitation products are nowadays widely used for climate and environmental research, water management, risk analysis, and decision support at the local, regional, and global scales. For all these applications, knowledge about the accuracy of the products is critical for their usability. However, products are not systematically provided with a quantitative measure of the uncertainty associated with each individual estimate. Various parametric error models have been proposed for uncertainty quantification, mostly assuming that the uncertainty is only a function of the precipitation intensity at the pixel and time of interest. By projecting satellite precipitation fields and their retrieval errors into the Fourier frequency–wavenumber domain, we show that we can explicitly take into account the neighboring space–time multiscale dynamics of precipitation and compute a scale-dependent uncertainty.

Open access
Lindsey J. M. Hayden
,
Jackson Tan
,
David T. Bolvin
, and
George J. Huffman

Abstract

The diurnal cycle of precipitation is highly regional and is typically a product of multiple competing, highly localized effects. The diurnal cycle in regions such as the Amazon and the Maritime Continent are of particular interest, due to the complex coastal and terrain effects. The high spatial and temporal resolution provided by the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) mission (IMERG) dataset are used in this study to examine the fine-scale features of the diurnal cycle in these regions. Using an 18-yr (2000–18) record of IMERG precipitation observations, diurnal and semidiurnal phase and amplitude are calculated using a fast Fourier transform (FFT) method on half-hourly averaged precipitation at 0.1° × 0.1°. Clear patterns of precipitation phase propagation with distance from shore are shown over both regions, with the diurnal phase and amplitude exhibiting a strong dependence on the distance from the coastline. Semidiurnal cycles are generally weaker than the diurnal cycle except in some isolated locations. Similar analysis is also conducted on the ERA5 reanalysis data in order to evaluate the model’s representation of the precipitation diurnal cycle. The model captures the broadscale patterns of diurnal variability but does not capture all the fine-scale patterns nor the exact timing that is observed by IMERG. Comparisons are also made to a long-record Ku radar dataset created by combining Tropical Rainfall Measuring Mission (TRMM) and GPM observations, thus providing an additional point of comparison for the timing of the ERA5 precipitation peak, since the timing precipitation can be different, even in between observational datasets.

Open access