Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Jake Shayer x
  • Refine by Access: All Content x
Clear All Modify Search
Carl J. Schreck III, Stephen Bennett, Jason M. Cordeira, Jake Crouch, Jenny Dissen, Andrea L. Lang, David Margolin, Adam O’Shay, Jared Rennie, Thomas Ian Schneider, and Michael J. Ventrice

Abstract

Day-to-day volatility in natural gas markets is driven largely by variability in heating demand, which is in turn dominated by cool-season temperature anomalies over the northeastern quadrant of the United States (“Midwest–East”). Energy traders rely on temperature forecasts at horizons of 2–4 weeks to anticipate those fluctuations in demand. Forecasts from dynamical models are widely available, so the markets react quickly to changes in the model predictions. Traders often work with meteorologists who leverage teleconnections from the tropics and the Arctic to improve upon the model forecasts. This study demonstrates how natural gas prices react to Midwest–East temperatures using the anomalous winters of 2011/12 and 2013/14. These examples also illustrate how energy meteorologists use teleconnections from the Arctic and the tropics to forecast heating demand.

Winter 2011/12 was exceptionally warm, consistent with the positive Arctic Oscillation (AO). March 2012 was a fitting exclamation point on the winter as it featured the largest warm anomaly for the United States above the twentieth-century climatology of any month since 1895. The resulting lack of heating demand led to record surpluses of natural gas storage and spurred prices downward to an 11-yr low in April 2012. In sharp contrast, winter 2013/14 was unusually cold. An anomalous Alaskan ridge led to cold air being transported from Siberia into the United States, despite the AO generally being positive. The ensuing swell in heating demand exhausted the surplus natural gas inventory, and prices rose to their highest levels since the beginning of the global recession in 2008.

Full access
Diana Greenslade, Mark Hemer, Alex Babanin, Ryan Lowe, Ian Turner, Hannah Power, Ian Young, Daniel Ierodiaconou, Greg Hibbert, Greg Williams, Saima Aijaz, João Albuquerque, Stewart Allen, Michael Banner, Paul Branson, Steve Buchan, Andrew Burton, John Bye, Nick Cartwright, Amin Chabchoub, Frank Colberg, Stephanie Contardo, Francois Dufois, Craig Earl-Spurr, David Farr, Ian Goodwin, Jim Gunson, Jeff Hansen, David Hanslow, Mitchell Harley, Yasha Hetzel, Ron Hoeke, Nicole Jones, Michael Kinsela, Qingxiang Liu, Oleg Makarynskyy, Hayden Marcollo, Said Mazaheri, Jason McConochie, Grant Millar, Tim Moltmann, Neal Moodie, Joao Morim, Russel Morison, Jana Orszaghova, Charitha Pattiaratchi, Andrew Pomeroy, Roger Proctor, David Provis, Ruth Reef, Dirk Rijnsdorp, Martin Rutherford, Eric Schulz, Jake Shayer, Kristen Splinter, Craig Steinberg, Darrell Strauss, Greg Stuart, Graham Symonds, Karina Tarbath, Daniel Taylor, James Taylor, Darshani Thotagamuwage, Alessandro Toffoli, Alireza Valizadeh, Jonathan van Hazel, Guilherme Vieira da Silva, Moritz Wandres, Colin Whittaker, David Williams, Gundula Winter, Jiangtao Xu, Aihong Zhong, and Stefan Zieger
Full access
Diana Greenslade, Mark Hemer, Alex Babanin, Ryan Lowe, Ian Turner, Hannah Power, Ian Young, Daniel Ierodiaconou, Greg Hibbert, Greg Williams, Saima Aijaz, João Albuquerque, Stewart Allen, Michael Banner, Paul Branson, Steve Buchan, Andrew Burton, John Bye, Nick Cartwright, Amin Chabchoub, Frank Colberg, Stephanie Contardo, Francois Dufois, Craig Earl-Spurr, David Farr, Ian Goodwin, Jim Gunson, Jeff Hansen, David Hanslow, Mitchell Harley, Yasha Hetzel, Ron Hoeke, Nicole Jones, Michael Kinsela, Qingxiang Liu, Oleg Makarynskyy, Hayden Marcollo, Said Mazaheri, Jason McConochie, Grant Millar, Tim Moltmann, Neal Moodie, Joao Morim, Russel Morison, Jana Orszaghova, Charitha Pattiaratchi, Andrew Pomeroy, Roger Proctor, David Provis, Ruth Reef, Dirk Rijnsdorp, Martin Rutherford, Eric Schulz, Jake Shayer, Kristen Splinter, Craig Steinberg, Darrell Strauss, Greg Stuart, Graham Symonds, Karina Tarbath, Daniel Taylor, James Taylor, Darshani Thotagamuwage, Alessandro Toffoli, Alireza Valizadeh, Jonathan van Hazel, Guilherme Vieira da Silva, Moritz Wandres, Colin Whittaker, David Williams, Gundula Winter, Jiangtao Xu, Aihong Zhong, and Stefan Zieger

Abstract

The Australian marine research, industry, and stakeholder community has recently undertaken an extensive collaborative process to identify the highest national priorities for wind-waves research. This was undertaken under the auspices of the Forum for Operational Oceanography Surface Waves Working Group. The main steps in the process were first, soliciting possible research questions from the community via an online survey; second, reviewing the questions at a face-to-face workshop; and third, online ranking of the research questions by individuals. This process resulted in 15 identified priorities, covering research activities and the development of infrastructure. The top five priorities are 1) enhanced and updated nearshore and coastal bathymetry; 2) improved understanding of extreme sea states; 3) maintain and enhance the in situ buoy network; 4) improved data access and sharing; and 5) ensemble and probabilistic wave modeling and forecasting. In this paper, each of the 15 priorities is discussed in detail, providing insight into why each priority is important, and the current state of the art, both nationally and internationally, where relevant. While this process has been driven by Australian needs, it is likely that the results will be relevant to other marine-focused nations.

Free access