Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: Jan D. Zika x
- Journal of Climate x
- Refine by Access: All Content x
Abstract
Over 90% of the buildup of additional heat in the Earth system over recent decades is contained in the ocean. Since 2006, new observational programs have revealed heterogeneous patterns of ocean heat content change. It is unclear how much of this heterogeneity is due to heat being added to and mixed within the ocean leading to material changes in water mass properties or is due to changes in circulation that redistribute existing water masses. Here we present a novel diagnosis of the “material” and “redistributed” contributions to regional heat content change between 2006 and 2017 that is based on a new “minimum transformation method” informed by both water mass transformation and optimal transportation theory. We show that material warming has large spatial coherence. The material change tends to be smaller than the redistributed change at any geographical location; however, it sums globally to the net warming of the ocean, whereas the redistributed component sums, by design, to zero. Material warming is robust over the time period of this analysis, whereas the redistributed signal only emerges from the variability in a few regions. In the North Atlantic Ocean, water mass changes indicate substantial material warming while redistribution cools the subpolar region as a result of a slowdown in the meridional overturning circulation. Warming in the Southern Ocean is explained by material warming and by anomalous southward heat transport of 118 ± 50 TW through redistribution. Our results suggest that near-term projections of ocean heat content change and therefore sea level change will hinge on understanding and predicting changes in ocean redistribution.
Abstract
Over 90% of the buildup of additional heat in the Earth system over recent decades is contained in the ocean. Since 2006, new observational programs have revealed heterogeneous patterns of ocean heat content change. It is unclear how much of this heterogeneity is due to heat being added to and mixed within the ocean leading to material changes in water mass properties or is due to changes in circulation that redistribute existing water masses. Here we present a novel diagnosis of the “material” and “redistributed” contributions to regional heat content change between 2006 and 2017 that is based on a new “minimum transformation method” informed by both water mass transformation and optimal transportation theory. We show that material warming has large spatial coherence. The material change tends to be smaller than the redistributed change at any geographical location; however, it sums globally to the net warming of the ocean, whereas the redistributed component sums, by design, to zero. Material warming is robust over the time period of this analysis, whereas the redistributed signal only emerges from the variability in a few regions. In the North Atlantic Ocean, water mass changes indicate substantial material warming while redistribution cools the subpolar region as a result of a slowdown in the meridional overturning circulation. Warming in the Southern Ocean is explained by material warming and by anomalous southward heat transport of 118 ± 50 TW through redistribution. Our results suggest that near-term projections of ocean heat content change and therefore sea level change will hinge on understanding and predicting changes in ocean redistribution.
Abstract
The global water cycle leaves an imprint on ocean salinity through evaporation and precipitation. It has been proposed that observed changes in salinity can be used to infer changes in the water cycle. Here salinity is characterized by the distribution of water masses in salinity coordinates. Only mixing and sources and sinks of freshwater and salt can modify this distribution. Mixing acts to collapse the distribution, making saline waters fresher and fresh waters more saline. Hence, in steady state, there must be net precipitation over fresh waters and net evaporation over saline waters. A simple model is developed to describe the relationship between the breadth of the distribution, the water cycle, and mixing—the latter being characterized by an e-folding time scale. In both observations and a state-of-the-art ocean model, the water cycle maintains a salinity distribution in steady state with a mixing time scale of the order of 50 yr. The same simple model predicts the response of the salinity distribution to a change in the water cycle. This study suggests that observations of changes in ocean salinity could be used to infer changes in the hydrological cycle.
Abstract
The global water cycle leaves an imprint on ocean salinity through evaporation and precipitation. It has been proposed that observed changes in salinity can be used to infer changes in the water cycle. Here salinity is characterized by the distribution of water masses in salinity coordinates. Only mixing and sources and sinks of freshwater and salt can modify this distribution. Mixing acts to collapse the distribution, making saline waters fresher and fresh waters more saline. Hence, in steady state, there must be net precipitation over fresh waters and net evaporation over saline waters. A simple model is developed to describe the relationship between the breadth of the distribution, the water cycle, and mixing—the latter being characterized by an e-folding time scale. In both observations and a state-of-the-art ocean model, the water cycle maintains a salinity distribution in steady state with a mixing time scale of the order of 50 yr. The same simple model predicts the response of the salinity distribution to a change in the water cycle. This study suggests that observations of changes in ocean salinity could be used to infer changes in the hydrological cycle.