Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Jan-Huey Chen x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
Jan-Huey Chen
and
Shian-Jiann Lin

Abstract

Retrospective seasonal predictions of tropical cyclones (TCs) in the three major ocean basins of the Northern Hemisphere are performed from 1990 to 2010 using the Geophysical Fluid Dynamics Laboratory High-Resolution Atmospheric Model (HiRAM) at 25-km resolution. Atmospheric states are initialized for each forecast, with the sea surface temperature anomaly (SSTA) “persisted” from that at the starting time during the 5-month forecast period (July–November). Using a five-member ensemble, it is shown that the storm counts of both tropical storm (TS) and hurricane categories are highly predictable in the North Atlantic basin during the 21-yr period. The correlations between the 21-yr observed and model predicted storm counts are 0.88 and 0.89 for hurricanes and TSs, respectively. The prediction in the eastern North Pacific is skillful, but it is not as outstanding as that in the North Atlantic. The persistent SSTA assumption appears to be less robust for the western North Pacific, contributing to less skillful predictions in that region. The relative skill in the prediction of storm counts is shown to be consistent with the quality of the predicted large-scale environment in the three major basins. It is shown that intensity distribution of TCs can be captured well by the model if the central sea level pressure is used as the threshold variable instead of the commonly used 10-m wind speed. This demonstrates the feasibility of using the 25-km-resolution HiRAM, a general circulation model designed initially for long-term climate simulations, to study the impacts of climate change on the intensity distribution of TCs.

Full access
Xianan Jiang
,
Baoqiang Xiang
,
Ming Zhao
,
Tim Li
,
Shian-Jiann Lin
,
Zhuo Wang
, and
Jan-Huey Chen

Abstract

Motivated by increasing demand in the community for intraseasonal predictions of weather extremes, predictive skill of tropical cyclogenesis is investigated in this study based on a global coupled model system. Limited intraseasonal cyclogenesis prediction skill with a high false alarm rate is found when averaged over about 600 tropical cyclones (TCs) over global oceans from 2003 to 2013, particularly over the North Atlantic (NA). Relatively skillful genesis predictions with more than 1-week lead time are only evident for about 10% of the total TCs. Further analyses suggest that TCs with relatively higher genesis skill are closely associated with the Madden–Julian oscillation (MJO) and tropical synoptic waves, with their geneses strongly phase-locked to the convectively active region of the MJO and low-level cyclonic vorticity associated with synoptic-scale waves. Moreover, higher cyclogenesis prediction skill is found for TCs that formed during the enhanced periods of strong MJO episodes than those during weak or suppressed MJO periods. All these results confirm the critical role of the MJO and tropical synoptic waves for intraseasonal prediction of TC activity. Tropical cyclogenesis prediction skill in this coupled model is found to be closely associated with model predictability of several large-scale dynamical and thermodynamical fields. Particularly over the NA, higher predictability of low-level relative vorticity, midlevel humidity, and vertical zonal wind shear is evident along a tropical belt from the West Africa coast to the Caribbean Sea, in accord with more predictable cyclogenesis over this region. Over the extratropical NA, large-scale variables exhibit less predictability due to influences of extratropical systems, leading to poor cyclogenesis predictive skill.

Full access
Wei Zhang
,
Gabriel A. Vecchi
,
Hiroyuki Murakami
,
Thomas Delworth
,
Andrew T. Wittenberg
,
Anthony Rosati
,
Seth Underwood
,
Whit Anderson
,
Lucas Harris
,
Richard Gudgel
,
Shian-Jiann Lin
,
Gabriele Villarini
, and
Jan-Huey Chen

Abstract

This study aims to assess whether, and the extent to which, an increase in atmospheric resolution of the Geophysical Fluid Dynamics Laboratory (GFDL) Forecast-Oriented Low Ocean Resolution version of CM2.5 (FLOR) with 50-km resolution and the High-Resolution FLOR (HiFLOR) with 25-km resolution improves the simulation of the El Niño–Southern Oscillation (ENSO)–tropical cyclone (TC) connections in the western North Pacific (WNP). HiFLOR simulates better ENSO–TC connections in the WNP including TC track density, genesis, and landfall than FLOR in both long-term control experiments and sea surface temperature (SST)- and sea surface salinity (SSS)-restoring historical runs (1971–2012). Restoring experiments are performed with SSS and SST restored to observational estimates of climatological SSS and interannually varying monthly SST. In the control experiments of HiFLOR, an improved simulation of the Walker circulation arising from more realistic SST and precipitation is largely responsible for its better performance in simulating ENSO–TC connections in the WNP. In the SST-restoring experiments of HiFLOR, more realistic Walker circulation and steering flow during El Niño and La Niña are responsible for the improved simulation of ENSO–TC connections in the WNP. The improved simulation of ENSO–TC connections with HiFLOR arises from a better representation of SST and better responses of environmental large-scale circulation to SST anomalies associated with El Niño or La Niña. A better representation of ENSO–TC connections in HiFLOR can benefit the seasonal forecasting of TC genesis, track, and landfall; improve understanding of the interannual variation of TC activity; and provide better projection of TC activity under climate change.

Full access
Hiroyuki Murakami
,
Gabriel A. Vecchi
,
Seth Underwood
,
Thomas L. Delworth
,
Andrew T. Wittenberg
,
Whit G. Anderson
,
Jan-Huey Chen
,
Richard G. Gudgel
,
Lucas M. Harris
,
Shian-Jiann Lin
, and
Fanrong Zeng

Abstract

A new high-resolution Geophysical Fluid Dynamics Laboratory (GFDL) coupled model [the High-Resolution Forecast-Oriented Low Ocean Resolution (FLOR) model (HiFLOR)] has been developed and used to investigate potential skill in simulation and prediction of tropical cyclone (TC) activity. HiFLOR comprises high-resolution (~25-km mesh) atmosphere and land components and a more moderate-resolution (~100-km mesh) sea ice and ocean component. HiFLOR was developed from FLOR by decreasing the horizontal grid spacing of the atmospheric component from 50 to 25 km, while leaving most of the subgrid-scale physical parameterizations unchanged. Compared with FLOR, HiFLOR yields a more realistic simulation of the structure, global distribution, and seasonal and interannual variations of TCs, as well as a comparable simulation of storm-induced cold wakes and TC-genesis modulation induced by the Madden–Julian oscillation (MJO). Moreover, HiFLOR is able to simulate and predict extremely intense TCs (Saffir–Simpson hurricane categories 4 and 5) and their interannual variations, which represents the first time a global coupled model has been able to simulate such extremely intense TCs in a multicentury simulation, sea surface temperature restoring simulations, and retrospective seasonal predictions.

Full access