Search Results

You are looking at 1 - 9 of 9 items for :

  • Author or Editor: Jan-Huey Chen x
  • Monthly Weather Review x
  • Refine by Access: All Content x
Clear All Modify Search
Carolyn A. Reynolds
,
Melinda S. Peng
, and
Jan-Huey Chen

Abstract

Singular vectors (SVs) are used to study the sensitivity of 2-day forecasts of recurving tropical cyclones (TCs) in the western North Pacific to changes in the initial state. The SVs are calculated using the tangent and adjoint models of the Navy Operational Global Atmospheric Prediction System (NOGAPS) for 72 forecasts for 18 TCs in the western North Pacific during 2006. In addition to the linear SV calculation, nonlinear perturbation experiments are also performed in order to examine 1) the similarity between nonlinear and linear perturbation growth and 2) the downstream impacts over the North Pacific and North America that result from changes to the 2-day TC forecast. Both nonrecurving and recurving 2-day storm forecasts are sensitive to changes in the initial state in the near-storm environment (in an annulus approximately 500 km from the storm center). During recurvature, sensitivity develops to the northwest of the storm, usually associated with a trough moving in from the west. These upstream sensitivities can occur as far as 4000 km to the northwest of the storm, over the Asian mainland, which has implications for adaptive observations. Nonlinear perturbation experiments indicate that the linear calculations reflect case-to-case variability in actual nonlinear perturbation growth fairly well, especially when the growth is large. The nonlinear perturbations show that for recurving tropical cyclones, small initial perturbations optimized to change the 2-day TC forecast can grow and propagate downstream quickly, reaching North America in 5 days. The fastest 5-day perturbation growth is associated with recurving storm forecasts that occur when the baroclinic instability over the North Pacific is relatively large. These results suggest that nonlinear forecasts perturbed using TC SVs may have utility for predicting the downstream impact of TC forecast errors over the North Pacific and North America.

Full access
Chun-Chieh Wu
,
Shin-Gan Chen
,
Jan-Huey Chen
,
Kun-Hsuan Chou
, and
Po-Hsiung Lin
Full access
Chun-Chieh Wu
,
Shin-Gan Chen
,
Jan-Huey Chen
,
Kun-Hsuan Chou
, and
Po-Hsiung Lin

Abstract

Targeted observation is one of the most important research and forecasting issues for improving tropical cyclone predictability. A new parameter [i.e., the adjoint-derived sensitivity steering vector (ADSSV)] has been proposed and adopted as one of the targeted observing strategies in the Dropwindsonde Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR). The ADSSV identifies the sensitive areas at the observing time to the steering flow at the verifying time through the adjoint calculation. In this study, the ADSSV is calculated from the nonlinear forecast model of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) and its adjoint to interpret the dynamical processes in the interaction between Typhoon Shanshan (2006) and the midlatitude trough. The ADSSV results imply that high-sensitivity regions affecting the motion of Typhoon Shanshan are located at the edge of the subtropical high and the 500-hPa midlatitude trough over northern central China. These ADSSV signals are in very good agreement with the quantitative evaluation based on the potential vorticity (PV) diagnosis. The vertical structure of the ADSSV is also shown for more physical insights into the typhoon–trough interaction. The maximum ADSSV occurs at 800–500 hPa to the southeast of Shanshan (associated with the subtropical high), while distinct ADSSV signals are located upstream of the storm center at about 500–300 hPa (associated with the mid- to upper-tropospheric midlatitude trough). Overall, it is demonstrated that the ADSSV features can well capture the signal of the large-scale trough feature affecting the motion of Shanshan, which can also be well validated from the PV analysis.

Full access
Shin-Gan Chen
,
Chun-Chieh Wu
,
Jan-Huey Chen
, and
Kun-Hsuan Chou

Abstract

The adjoint-derived sensitivity steering vector (ADSSV) has been proposed and applied as a guidance for targeted observation in the field programs for improving tropical cyclone predictability, such as The Observing System Research and Predictability Experiment (THORPEX) Pacific Asian Regional Campaign (T-PARC). The ADSSV identifies sensitive areas at the observing time to the steering flow at the verifying time through adjoint calculation. In addition, the ability of the ADSSV to represent signals of influence from synoptic systems such as the midlatitude trough and the subtropical high prior to the recurvature of Typhoon Shanshan (2006) has also been demonstrated.

In this study, the impact of initial perturbations associated with the high or low ADSSV sensitivity on model simulations is investigated by systematically perturbing initial vorticity fields in the case of Shanshan. Results show that experiments with the perturbed initial conditions located in the high ADSSV area (i.e., the midlatitude trough and the subtropical high) lead to more track deflection relative to the unperturbed control run than experiments with perturbations in the low sensitivity area. The evolutions of the deep-layer-mean steering flow and the direction of the ADSSV are compared to provide conceptual interpretation and validation on the physical meaning of the ADSSV. Concerning the results associated with the perturbed regions in high sensitivity regions, the variation of the steering flow within the verifying area due to the initial perturbations is generally consistent with that of the direction of the ADSSV. In addition, the bifurcation between the ADSSV and the steering change becomes larger with the increased integration time. However, the result for the perturbed region in the low-sensitivity region indicates that the steering change does not have good agreement with the ADSSV. The large initial perturbations to the low-sensitivity region may interact with the trough to the north due to the nonlinearity, which may not be accounted for in the ADSSV. Furthermore, the effect of perturbations specifically within the sensitive vertical layers is investigated to validate the vertical structure of the ADSSV. The structure of kinetic energy shows that the perturbation associated with the trough (subtropical high) specifically in the mid-to-upper (mid-to-lower) troposphere evolves similarly to that in the deep-layer troposphere, leading to comparable track changes. A sensitivity test in which perturbations are locally introduced in a higher-sensitivity area is conducted to examine the different impact as compared to that perturbed with the broader synoptic feature.

Full access
Chun-Chieh Wu
,
Kevin K. W. Cheung
,
Jan-Huey Chen
, and
Cheng-Chuan Chang

Abstract

A heavy rainfall event associated with the passage of Tropical Storm Rachel (1999) over southern Taiwan was studied in which a conceptual model was proposed. In the model, Tropical Storm Paul (1999) plays an important role in impeding the movement of Rachel, thus becoming one of the key factors in enhancing the rainfall amount in southern Taiwan. To further quantify the above concept, a mesoscale numerical model is used to evaluate the influence of Paul on the simulated rainfall associated with Rachel near Taiwan. Sensitivity experiments are performed by removing the circulation of Paul, and/or the large-scale monsoon trough system, where Paul is imbedded. The potential vorticity diagnosis shows that the movement of Rachel is indeed affected by the presence of Paul. Nevertheless, a more detailed analysis shows that it is the presence of the entire monsoon trough that impedes the movement of Rachel and steers the storm toward southwestern Taiwan especially before its landfall. In all, these results generally support the conceptual model with regard to the heavy rainfall mechanism proposed in a previous study. Moreover, this study further points out that it is the circulation associated with both Paul and the entire monsoon trough that affects the movement of Rachel. In addition, the analyses based on the no-terrain simulation depict the relationships among the moisture-rich air from the South China Sea associated with Rachel, relatively dry air from South China, and the mechanism of forming a warm and dry region to the eastern side of the Taiwan terrain, which greatly influences the heavy rainfall distribution in the event.

Full access
Jan-Huey Chen
,
Shian-Jiann Lin
,
Linjiong Zhou
,
Xi Chen
,
Shannon Rees
,
Morris Bender
, and
Matthew Morin

Abstract

A new global model using the GFDL nonhydrostatic Finite-Volume Cubed-Sphere Dynamical Core (FV3) coupled to physical parameterizations from the National Centers for Environmental Prediction’s Global Forecast System (NCEP/GFS) was built at GFDL, named fvGFS. The modern dynamical core, FV3, has been selected for the National Oceanic and Atmospheric Administration’s Next Generation Global Prediction System (NGGPS) due to its accuracy, adaptability, and computational efficiency, which brings a great opportunity for the unification of weather and climate prediction systems. The performance of tropical cyclone (TC) forecasts in the 13-km fvGFS is evaluated globally based on 363 daily cases of 10-day forecasts in 2015. Track and intensity errors of TCs in fvGFS are compared to those in the operational GFS. The fvGFS outperforms the GFS in TC intensity prediction for all basins. For TC track prediction, the fvGFS forecasts are substantially better over the northern Atlantic basin and the northern Pacific Ocean than the GFS forecasts. An updated version of the fvGFS with the GFDL 6-category cloud microphysics scheme is also investigated based on the same 363 cases. With this upgraded microphysics scheme, fvGFS shows much improvement in TC intensity prediction over the operational GFS. Besides track and intensity forecasts, the performance of TC genesis forecast is also compared between the fvGFS and operational GFS. In addition to evaluating the hit/false alarm ratios, a novel method is developed to investigate the lengths of TC genesis lead times in the forecasts. Both versions of fvGFS show higher hit ratios, lower false alarm ratios, and longer genesis lead times than those of the GFS model in most of the TC basins.

Open access
Baoqiang Xiang
,
Shian-Jiann Lin
,
Ming Zhao
,
Shaoqing Zhang
,
Gabriel Vecchi
,
Tim Li
,
Xianan Jiang
,
Lucas Harris
, and
Jan-Huey Chen

Abstract

While tropical cyclone (TC) prediction, in particular TC genesis, remains very challenging, accurate prediction of TCs is critical for timely preparedness and mitigation. Using a new version of the Geophysical Fluid Dynamics Laboratory (GFDL) coupled model, the authors studied the predictability of two destructive landfall TCs: Hurricane Sandy in 2012 and Super Typhoon Haiyan in 2013. Results demonstrate that the geneses of these two TCs are highly predictable with the maximum prediction lead time reaching 11 days. The “beyond weather time scale” predictability of tropical cyclogenesis is primarily attributed to the model’s skillful prediction of the intraseasonal Madden–Julian oscillation (MJO) and the westward propagation of easterly waves. Meanwhile, the landfall location and time can be predicted one week ahead for Sandy’s U.S landfall, and two weeks ahead for Haiyan’s landing in the Philippines. The success in predicting Sandy and Haiyan, together with low false alarms, indicates the potential of using the GFDL coupled model for extended-range predictions of TCs.

Full access
Chun-Chieh Wu
,
Jan-Huey Chen
,
Sharanya J. Majumdar
,
Melinda S. Peng
,
Carolyn A. Reynolds
,
Sim D. Aberson
,
Roberto Buizza
,
Munehiko Yamaguchi
,
Shin-Gan Chen
,
Tetsuo Nakazawa
, and
Kun-Hsuan Chou

Abstract

This study compares six different guidance products for targeted observations over the northwest Pacific Ocean for 84 cases of 2-day forecasts in 2006 and highlights the unique dynamical features affecting the tropical cyclone (TC) tracks in this basin. The six products include three types of guidance based on total-energy singular vectors (TESVs) from different global models, the ensemble transform Kalman filter (ETKF) based on a multimodel ensemble, the deep-layer mean (DLM) wind variance, and the adjoint-derived sensitivity steering vector (ADSSV). The similarities among the six products are evaluated using two objective statistical techniques to show the diversity of the sensitivity regions in large, synoptic-scale domains and in smaller domains local to the TC. It is shown that the three TESVs are relatively similar to one another in both the large and the small domains while the comparisons of the DLM wind variance with other methods show rather low similarities. The ETKF and the ADSSV usually show high similarity because their optimal sensitivity usually lies close to the TC. The ADSSV, relative to the ETKF, reveals more similar sensitivity patterns to those associated with TESVs. Three special cases are also selected to highlight the similarities and differences among the six guidance products and to interpret the dynamical systems affecting the TC motion in the northwestern Pacific. Among the three storms studied, Typhoon Chanchu was associated with the subtropical high, Typhoon Shanshan was associated with the midlatitude trough, and Typhoon Durian was associated with the subtropical jet. The adjoint methods are found to be more capable of capturing the signal of the dynamic system that may affect the TC movement or evolution than are the ensemble methods.

Full access
Ron McTaggart-Cowan
,
David S. Nolan
,
Rabah Aider
,
Martin Charron
,
Jan-Huey Chen
,
Jean-François Cossette
,
Stéphane Gaudreault
,
Syed Husain
,
Linus Magnusson
,
Abdessamad Qaddouri
,
Leo Separovic
,
Christopher Subich
, and
Jing Yang

Abstract

The operational Canadian Global Deterministic Prediction System suffers from a weak-intensity bias for simulated tropical cyclones. The presence of this bias is confirmed in progressively simplified experiments using a hierarchical system development technique. Within a semi-idealized, simplified-physics framework, an unexpected insensitivity to the representation of relevant physical processes leads to investigation of the model’s semi-Lagrangian dynamical core. The root cause of the weak-intensity bias is identified as excessive numerical dissipation caused by substantial off-centering in the two time-level time integration scheme used to solve the governing equations. Any (semi)implicit semi-Lagrangian model that employs such off-centering to enhance numerical stability will be afflicted by a misalignment of the pressure gradient force in strong vortices. Although the associated drag is maximized in the tropical cyclone eyewall, the impact on storm intensity can be mitigated through an intercomparison-constrained adjustment of the model’s temporal discretization. The revised configuration is more sensitive to changes in physical parameterizations and simulated tropical cyclone intensities are improved at each step of increasing experimental complexity. Although some rebalancing of the operational system may be required to adapt to the increased effective resolution, significant reduction of the weak-intensity bias will improve the quality of Canadian guidance for global tropical cyclone forecasting.

Significance Statement

Global numerical weather prediction systems provide important guidance to forecasters about tropical cyclone development, motion, and intensity. Despite recent improvements in the Canadian operational model’s ability to predict tropical cyclone formation, the system systematically underpredicts the intensity of these storms. In this study, we use a set of increasingly simplified experiments to identify the source of this error, which lies in the numerical time-stepping scheme used to solve the model equations. By decreasing numerical drag on the tropical cyclone circulation, intensity predictions that resemble those of other global modeling systems are achieved. This will improve the quality of Canadian tropical cyclone guidance for forecasters around the world.

Open access