Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Jason E. Nachamkin x
  • Weather and Forecasting x
  • Refine by Access: All Content x
Clear All Modify Search
Jason E. Nachamkin

Abstract

The composite method is applied to verify a series of idealized and real precipitation forecasts as part of the Spatial Forecast Verification Methods Intercomparison Project. The test cases range from simple geometric shapes to high-resolution (∼4 km) numerical model precipitation output. The performance of the composite method is described as it is applied to each set of forecasts. In general, the method performed well because it was able to relay information concerning spatial displacement and areal coverage errors. Summary scores derived from the composite means and the individual events displayed relevant information in a condensed form. The composite method also showed an ability to discern performance attributes from high-resolution precipitation forecasts from several competing model configurations, though the results were somewhat limited by the lack of data. Overall, the composite method proved to be most sensitive in revealing systematic displacement errors, while it was less sensitive to systematic model biases.

Full access
Jason E. Nachamkin
and
Yi Jin

Abstract

When consulting a forecast, users often ask some variant of the following questions: Will an event of interest occur? If so, when will it occur? How long will it last? How intense will it be? Standard verification measures often do not directly communicate the ability of a forecast to answer these questions. Instead, quantitative scores typically address them indirectly or in some combined form. A more direct performance measure grew from what started as a project for a high-school intern. The challenge was to evaluate aspects of forecast quality from a set of convection-allowing (1.67 km) precipitation forecasts over Florida. Although the output was highly detailed, evaluation became manageable by simply adding a series of static landmarks with range rings and radials. Using the “targets” as a guide, the student and the two authors successfully obtained quantitative estimates of model tendencies that had heretofore only been reported anecdotally. What follows is a description of the method as well as the results from the analysis. It is hoped that this work will stimulate a broader discussion about how to extract performance information from very complex forecasts and present that information in terms that humans can readily perceive.

Full access
Ming Liu
,
Jason E. Nachamkin
, and
Douglas L. Westphal

Abstract

Fu–Liou’s delta-four-stream (with a two-stream option) radiative transfer model has been implemented in the U.S. Navy’s Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) 1 to calculate solar and thermal infrared fluxes in 6 shortwave and 12 longwave bands. The model performance is evaluated at high resolution for clear-sky and overcast conditions against the observations from the Southern Great Plains of the Atmospheric Radiation Measurement Program. In both cases, use of the Fu–Liou model provides significant improvement over the operational implementation of the standard Harshvardhan radiation parameterization in both shortwave and longwave fluxes. A sensitivity study of radiative flux on clouds reveals that the choices of cloud effective radius schemes for ice and liquid water are critical to the flux calculation due to the effects on cloud optical properties. The sensitivity study guides the selection of optimal cloud optical properties for use in the Fu–Liou parameterization as implemented in COAMPS. The new model is then used to produce 3-day forecasts over the continental United States for a winter and a summer month. The verifications of parallel runs using the standard and new parameterizations show that Fu–Liou dramatically reduces the model’s systematic warm bias in the upper troposphere in both winter and summer. The resultant cooling modifies the atmospheric stability and moisture transport, resulting in a significant reduction in the upper-tropospheric wet bias. Overall ice and liquid water paths are also reduced. At the surface, Fu–Liou reduces the negative temperature and sea level pressure biases by providing more accurate radiative heating rates to the land surface model. The error reductions increase with forecast length as the impact of improved radiative fluxes accumulates over time. A combination of the two- and four-stream options results in major computational efficiency gains with minimal loss in accuracy.

Full access
Kevin J. Dougherty
,
John D. Horel
, and
Jason E. Nachamkin

Abstract

Precipitation forecasts from the High-Resolution Rapid Refresh model (HRRR) of the National Centers for Environmental Prediction (NCEP) and the Navy’s Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) are examined during heavy precipitation periods in California. Precipitation forecast discrepancies between the two models are examined during a recent heavy winter precipitation episode in California from 6 to 8 December 2019. The skill of initial 12-h precipitation forecasts is examined objectively from 1 December 2018 to 28 February 2019 from the HRRR, COAMPS, and NCEP’s North American Mesoscale Forecast System (NAM-3km). The HRRR exhibited lower seasonal biases and higher skill based on several metrics applied to a sample of 48 12-h periods during California’s second wettest winter season during the past 20 years. Overall, the NAM-3km and COAMPS exhibited a large wet bias over the interior mountain regions while the HRRR model indicated a dry bias along the northern coastal region. All models tended to underestimate precipitation along the coastal mountains of Northern California. To highlight the regional and localized nature of forecast skill, the fraction skill score (FSS) metric is applied across ranges of spatial scales and precipitation values. For the domain as a whole, the HRRR had higher precipitation forecast skill compared to the other two models, particularly within radial distances of 20–30 km and moderate (10–50 mm) precipitation totals. FSS computed locally highlights the HRRR’s overall higher skill as well as enhanced skill in the southern half of the state.

Open access