Search Results
You are looking at 1 - 5 of 5 items for
- Author or Editor: Jatin Kala x
- Refine by Access: All Content x
Abstract
The authors evaluate a 30-yr (1981–2010) Weather Research and Forecast (WRF) Model regional climate simulation over the southwest of Western Australia (SWWA), a region with a Mediterranean climate, using ERA-Interim boundary conditions. The analysis assesses the spatial and temporal characteristics of climate extremes, using a selection of climate indices, with an emphasis on metrics that are relevant for forestry and agricultural applications. Two nested domains at 10- and 5-km resolution are examined, with the higher-resolution simulation resolving convection explicitly. Simulation results are compared with a high-resolution, gridded observational dataset that provides daily rainfall, minimum temperatures, and maximum temperatures. Results show that, at both resolutions, the model is able to simulate the daily, seasonal, and annual variation of temperature and precipitation well, including extreme events. The higher-resolution domain displayed significant performance gains in simulating dry-season convective precipitation, rainfall around complex terrain, and the spatial distribution of frost conditions. The high-resolution domain was, however, influenced by grid-edge effects in the southwestern margin, which reduced the ability of the domain to represent frontal rainfall along the coastal region. On the basis of these results, the authors feel confident in using the WRF Model for regional climate simulations for the SWWA, including studies that focus on the spatial and temporal representation of climate extremes. This study provides a baseline climatological description at a high resolution that can be used for impact studies and will also provide a benchmark for climate simulations driven by general circulation models.
Abstract
The authors evaluate a 30-yr (1981–2010) Weather Research and Forecast (WRF) Model regional climate simulation over the southwest of Western Australia (SWWA), a region with a Mediterranean climate, using ERA-Interim boundary conditions. The analysis assesses the spatial and temporal characteristics of climate extremes, using a selection of climate indices, with an emphasis on metrics that are relevant for forestry and agricultural applications. Two nested domains at 10- and 5-km resolution are examined, with the higher-resolution simulation resolving convection explicitly. Simulation results are compared with a high-resolution, gridded observational dataset that provides daily rainfall, minimum temperatures, and maximum temperatures. Results show that, at both resolutions, the model is able to simulate the daily, seasonal, and annual variation of temperature and precipitation well, including extreme events. The higher-resolution domain displayed significant performance gains in simulating dry-season convective precipitation, rainfall around complex terrain, and the spatial distribution of frost conditions. The high-resolution domain was, however, influenced by grid-edge effects in the southwestern margin, which reduced the ability of the domain to represent frontal rainfall along the coastal region. On the basis of these results, the authors feel confident in using the WRF Model for regional climate simulations for the SWWA, including studies that focus on the spatial and temporal representation of climate extremes. This study provides a baseline climatological description at a high resolution that can be used for impact studies and will also provide a benchmark for climate simulations driven by general circulation models.
Abstract
The Weather Research and Forecasting (WRF) Model is evaluated as a regional climate model for the simulation of climate indices that are relevant to viticulture in Western Australia’s wine regions at a 5-km resolution under current and future climate. WRF is driven with ERA-Interim reanalysis for the current climate and three global climate models (GCMs) for both current and future climate. The focus of the analysis is on a selection of climate indices that are commonly used in climate–viticulture research. Simulations of current climate are evaluated against an observational dataset to quantify model errors over the 1981–2010 period. Changes to the indices under future climate based on the SRES A2 emissions scenario are then assessed through an analysis of future (2030–59) minus present (1970–99) climate. Results show that when WRF is driven with ERA-Interim there is generally good agreement with observations for all of the indices although there is a noticeable negative bias for the simulation of precipitation. The results for the GCM-forced simulations were less consistent. Namely, while the GCM-forced simulations performed reasonably well for the temperature indices, all simulations performed inconsistently for the precipitation index. Climate projections showed significant warming for both of the temperature indices and indicated potential risks to Western Australia’s wine growing regions under future climate, particularly in the north. There was disagreement between simulations with regard to the projections of the precipitation indices and hence greater uncertainty as to how these will be characterized under future climate.
Abstract
The Weather Research and Forecasting (WRF) Model is evaluated as a regional climate model for the simulation of climate indices that are relevant to viticulture in Western Australia’s wine regions at a 5-km resolution under current and future climate. WRF is driven with ERA-Interim reanalysis for the current climate and three global climate models (GCMs) for both current and future climate. The focus of the analysis is on a selection of climate indices that are commonly used in climate–viticulture research. Simulations of current climate are evaluated against an observational dataset to quantify model errors over the 1981–2010 period. Changes to the indices under future climate based on the SRES A2 emissions scenario are then assessed through an analysis of future (2030–59) minus present (1970–99) climate. Results show that when WRF is driven with ERA-Interim there is generally good agreement with observations for all of the indices although there is a noticeable negative bias for the simulation of precipitation. The results for the GCM-forced simulations were less consistent. Namely, while the GCM-forced simulations performed reasonably well for the temperature indices, all simulations performed inconsistently for the precipitation index. Climate projections showed significant warming for both of the temperature indices and indicated potential risks to Western Australia’s wine growing regions under future climate, particularly in the north. There was disagreement between simulations with regard to the projections of the precipitation indices and hence greater uncertainty as to how these will be characterized under future climate.
Abstract
A two-layer steady-state resistance model is compared with routine meteorological data collected from the Western Australian wheat belt during 2000–06. Major difficulties in implementing such a model are the correct parameterization for the incoming longwave radiation and estimation of daily soil moisture, neither of which are routinely measured. These difficulties are addressed by testing parameterizations for incoming longwave radiation calibrated to local conditions and incorporating a soil–water balance model based on routine weather data. The modified model has RMSE and biases ranging from 2.4° to 3.1°C and −0.2° to 0.8°C, respectively, across the wheat belt when comparing all minimum nocturnal temperatures. The model is shown to predict frost events approximately 55% of the time and illustrates that frost damage to foliage may occur when screen temperatures are < 2°C.
Abstract
A two-layer steady-state resistance model is compared with routine meteorological data collected from the Western Australian wheat belt during 2000–06. Major difficulties in implementing such a model are the correct parameterization for the incoming longwave radiation and estimation of daily soil moisture, neither of which are routinely measured. These difficulties are addressed by testing parameterizations for incoming longwave radiation calibrated to local conditions and incorporating a soil–water balance model based on routine weather data. The modified model has RMSE and biases ranging from 2.4° to 3.1°C and −0.2° to 0.8°C, respectively, across the wheat belt when comparing all minimum nocturnal temperatures. The model is shown to predict frost events approximately 55% of the time and illustrates that frost damage to foliage may occur when screen temperatures are < 2°C.
Abstract
The authors use a sophisticated coupled land–atmosphere modeling system for a Southern Hemisphere subdomain centered over southeastern Australia to evaluate differences in simulation skill from two different land surface initialization approaches. The first approach uses equilibrated land surface states obtained from offline simulations of the land surface model, and the second uses land surface states obtained from reanalyses. The authors find that land surface initialization using prior offline simulations contribute to relative gains in subseasonal forecast skill. In particular, relative gains in forecast skill for temperature of 10%–20% within the first 30 days of the forecast can be attributed to the land surface initialization method using offline states. For precipitation there is no distinct preference for the land surface initialization method, with limited gains in forecast skill irrespective of the lead time. The authors evaluated the asymmetry between maximum and minimum temperatures and found that maximum temperatures had the largest gains in relative forecast skill, exceeding 20% in some regions. These results were statistically significant at the 98% confidence level at up to 60 days into the forecast period. For minimum temperature, using reanalyses to initialize the land surface contributed to relative gains in forecast skill, reaching 40% in parts of the domain that were statistically significant at the 98% confidence level. The contrasting impact of the land surface initialization method between maximum and minimum temperature was associated with different soil moisture coupling mechanisms. Therefore, land surface initialization from prior offline simulations does improve predictability for temperature, particularly maximum temperature, but with less obvious improvements for precipitation and minimum temperature over southeastern Australia.
Abstract
The authors use a sophisticated coupled land–atmosphere modeling system for a Southern Hemisphere subdomain centered over southeastern Australia to evaluate differences in simulation skill from two different land surface initialization approaches. The first approach uses equilibrated land surface states obtained from offline simulations of the land surface model, and the second uses land surface states obtained from reanalyses. The authors find that land surface initialization using prior offline simulations contribute to relative gains in subseasonal forecast skill. In particular, relative gains in forecast skill for temperature of 10%–20% within the first 30 days of the forecast can be attributed to the land surface initialization method using offline states. For precipitation there is no distinct preference for the land surface initialization method, with limited gains in forecast skill irrespective of the lead time. The authors evaluated the asymmetry between maximum and minimum temperatures and found that maximum temperatures had the largest gains in relative forecast skill, exceeding 20% in some regions. These results were statistically significant at the 98% confidence level at up to 60 days into the forecast period. For minimum temperature, using reanalyses to initialize the land surface contributed to relative gains in forecast skill, reaching 40% in parts of the domain that were statistically significant at the 98% confidence level. The contrasting impact of the land surface initialization method between maximum and minimum temperature was associated with different soil moisture coupling mechanisms. Therefore, land surface initialization from prior offline simulations does improve predictability for temperature, particularly maximum temperature, but with less obvious improvements for precipitation and minimum temperature over southeastern Australia.
Abstract
Leaf area index (LAI), the total one-sided surface area of leaf per ground surface area, is a key component of land surface models. The authors investigate the influence of differing, plausible LAI prescriptions on heat, moisture, and carbon fluxes simulated by the Community Atmosphere Biosphere Land Exchange version 1.4b (CABLEv1.4b) model over the Australian continent. A 15-member ensemble monthly LAI dataset is generated using the Moderate Resolution Imaging Spectroradiometer (MODIS) LAI product and gridded observations of temperature and precipitation. Offline simulations lasting 29 years (1980–2008) are carried out at 25-km resolution with the composite monthly means from the MODIS LAI product (control simulation) and compared with simulations using each of the 15-member ensemble monthly varying LAI datasets generated. The imposed changes in LAI did not strongly influence the sensible and latent fluxes, but the carbon fluxes were more strongly affected. Croplands showed the largest sensitivity in gross primary production with differences ranging from −90% to 60%. Plant function types (PFTs) with high absolute LAI and low interannual variability, such as evergreen broadleaf trees, showed the least response to the different LAI prescriptions, while those with lower absolute LAI and higher interannual variability, such as croplands, were more sensitive. The authors show that reliance on a single LAI prescription may not accurately reflect the uncertainty in the simulation of terrestrial carbon fluxes, especially for PFTs with high interannual variability. The study highlights that accurate representation of LAI in land surface models is key to the simulation of the terrestrial carbon cycle. Hence, this will become critical in quantifying the uncertainty in future changes in primary production.
Abstract
Leaf area index (LAI), the total one-sided surface area of leaf per ground surface area, is a key component of land surface models. The authors investigate the influence of differing, plausible LAI prescriptions on heat, moisture, and carbon fluxes simulated by the Community Atmosphere Biosphere Land Exchange version 1.4b (CABLEv1.4b) model over the Australian continent. A 15-member ensemble monthly LAI dataset is generated using the Moderate Resolution Imaging Spectroradiometer (MODIS) LAI product and gridded observations of temperature and precipitation. Offline simulations lasting 29 years (1980–2008) are carried out at 25-km resolution with the composite monthly means from the MODIS LAI product (control simulation) and compared with simulations using each of the 15-member ensemble monthly varying LAI datasets generated. The imposed changes in LAI did not strongly influence the sensible and latent fluxes, but the carbon fluxes were more strongly affected. Croplands showed the largest sensitivity in gross primary production with differences ranging from −90% to 60%. Plant function types (PFTs) with high absolute LAI and low interannual variability, such as evergreen broadleaf trees, showed the least response to the different LAI prescriptions, while those with lower absolute LAI and higher interannual variability, such as croplands, were more sensitive. The authors show that reliance on a single LAI prescription may not accurately reflect the uncertainty in the simulation of terrestrial carbon fluxes, especially for PFTs with high interannual variability. The study highlights that accurate representation of LAI in land surface models is key to the simulation of the terrestrial carbon cycle. Hence, this will become critical in quantifying the uncertainty in future changes in primary production.