Search Results
You are looking at 1 - 3 of 3 items for :
- Author or Editor: Jean-Pierre Chaboureau x
- Bulletin of the American Meteorological Society x
- Refine by Access: All Content x
From 1979 to present, sensors aboard the NOAA series of polar meteorological satellites have provided continuous measurements of the earth's surface and atmosphere. One of these sensors, the TIROS-N Operational Vertical Sounder (TOVS), observes earth-emitted radiation in 27 wavelength bands within the infrared and microwave portions of the spectrum, thereby creating a valuable resource for studying the climate of our planet. The NOAA–NASA Pathfinder program was conceived to make these data more readily accessible to the community in the form of processed geophysical variables. The Atmospheric Radiation Analysis group at the Laboratoire de Météorologie Dynamique of the Centre National de la Recherche Scientifique of France was selected to process TOVS data into climate products (Path-B). The Improved Initialization Inversion (3I) retrieval algorithm is used to compute these products from the satellite-observed radiances. The processing technique ensures internal coherence and minimizes both observational and computational biases. Products are at a 1° × 1° latitude–longitude grid and include atmospheric temperature profiles (up to 10 hPa); total precipitable water vapor and content above four levels up to 300 hPa; surface skin temperature; and cloud properties (amount, type, and cloud-top pressure and temperature). The information is archived as 1-day, 5-day, and monthly means on the entire globe; a.m. and p.m. products for each satellite are stored separately. Eight years have been processed to date, and processing continues at the rate of approximately two satellite-months per day of computer time. Quality assessment studies are presented. They consist of comparisons to conventional meteorological data and to other remote sensing datasets.
From 1979 to present, sensors aboard the NOAA series of polar meteorological satellites have provided continuous measurements of the earth's surface and atmosphere. One of these sensors, the TIROS-N Operational Vertical Sounder (TOVS), observes earth-emitted radiation in 27 wavelength bands within the infrared and microwave portions of the spectrum, thereby creating a valuable resource for studying the climate of our planet. The NOAA–NASA Pathfinder program was conceived to make these data more readily accessible to the community in the form of processed geophysical variables. The Atmospheric Radiation Analysis group at the Laboratoire de Météorologie Dynamique of the Centre National de la Recherche Scientifique of France was selected to process TOVS data into climate products (Path-B). The Improved Initialization Inversion (3I) retrieval algorithm is used to compute these products from the satellite-observed radiances. The processing technique ensures internal coherence and minimizes both observational and computational biases. Products are at a 1° × 1° latitude–longitude grid and include atmospheric temperature profiles (up to 10 hPa); total precipitable water vapor and content above four levels up to 300 hPa; surface skin temperature; and cloud properties (amount, type, and cloud-top pressure and temperature). The information is archived as 1-day, 5-day, and monthly means on the entire globe; a.m. and p.m. products for each satellite are stored separately. Eight years have been processed to date, and processing continues at the rate of approximately two satellite-months per day of computer time. Quality assessment studies are presented. They consist of comparisons to conventional meteorological data and to other remote sensing datasets.
Abstract
The Aerosol, Radiation and Clouds in southern Africa (AEROCLO-sA) project investigates the role of aerosols on the regional climate of southern Africa. This is a unique environment where natural and anthropogenic aerosols and a semipermanent and widespread stratocumulus (Sc) cloud deck are found. The project aims to understand the dynamical, chemical, and radiative processes involved in aerosol–cloud–radiation interactions over land and ocean and under various meteorological conditions. The AEROCLO-sA field campaign was conducted in August and September of 2017 over Namibia. An aircraft equipped with active and passive remote sensors and aerosol in situ probes performed a total of 30 research flight hours. In parallel, a ground-based mobile station with state-of-the-art in situ aerosol probes and remote sensing instrumentation was implemented over coastal Namibia, and complemented by ground-based and balloonborne observations of the dynamical, thermodynamical, and physical properties of the lower troposphere. The focus laid on mineral dust emitted from salty pans and ephemeral riverbeds in northern Namibia, the advection of biomass-burning aerosol plumes from Angola subsequently transported over the Atlantic Ocean, and aerosols in the marine boundary layer at the ocean–atmosphere interface. This article presents an overview of the AEROCLO-sA field campaign with results from the airborne and surface measurements. These observations provide new knowledge of the interactions of aerosols and radiation in cloudy and clear skies in connection with the atmospheric dynamics over southern Africa. They will foster new advanced climate simulations and enhance the capability of spaceborne sensors, ultimately allowing a better prediction of future climate and weather in southern Africa.
Abstract
The Aerosol, Radiation and Clouds in southern Africa (AEROCLO-sA) project investigates the role of aerosols on the regional climate of southern Africa. This is a unique environment where natural and anthropogenic aerosols and a semipermanent and widespread stratocumulus (Sc) cloud deck are found. The project aims to understand the dynamical, chemical, and radiative processes involved in aerosol–cloud–radiation interactions over land and ocean and under various meteorological conditions. The AEROCLO-sA field campaign was conducted in August and September of 2017 over Namibia. An aircraft equipped with active and passive remote sensors and aerosol in situ probes performed a total of 30 research flight hours. In parallel, a ground-based mobile station with state-of-the-art in situ aerosol probes and remote sensing instrumentation was implemented over coastal Namibia, and complemented by ground-based and balloonborne observations of the dynamical, thermodynamical, and physical properties of the lower troposphere. The focus laid on mineral dust emitted from salty pans and ephemeral riverbeds in northern Namibia, the advection of biomass-burning aerosol plumes from Angola subsequently transported over the Atlantic Ocean, and aerosols in the marine boundary layer at the ocean–atmosphere interface. This article presents an overview of the AEROCLO-sA field campaign with results from the airborne and surface measurements. These observations provide new knowledge of the interactions of aerosols and radiation in cloudy and clear skies in connection with the atmospheric dynamics over southern Africa. They will foster new advanced climate simulations and enhance the capability of spaceborne sensors, ultimately allowing a better prediction of future climate and weather in southern Africa.
CHUVA, meaning “rain” in Portuguese, is the acronym for the Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud-Resolving Modeling and to the Global Precipitation Measurement (GPM). The CHUVA project has conducted five field campaigns; the sixth and last campaign will be held in Manaus in 2014. The primary scientific objective of CHUVA is to contribute to the understanding of cloud processes, which represent one of the least understood components of the weather and climate system. The five CHUVA campaigns were designed to investigate specific tropical weather regimes. The first two experiments, in Alcantara and Fortaleza in northeastern Brazil, focused on warm clouds. The third campaign, which was conducted in Belém, was dedicated to tropical squall lines that often form along the sea-breeze front. The fourth campaign was in the Vale do Paraiba of southeastern Brazil, which is a region with intense lightning activity. In addition to contributing to the understanding of cloud process evolution from storms to thunderstorms, this fourth campaign also provided a high-fidelity total lightning proxy dataset for the NOAA Geostationary Operational Environmental Satellite (GOES)-R program. The fifth campaign was carried out in Santa Maria, in southern Brazil, a region of intense hailstorms associated with frequent mesoscale convective complexes. This campaign employed a multimodel high-resolution ensemble experiment. The data collected from contrasting precipitation regimes in tropical continental regions allow the various cloud processes in diverse environments to be compared. Some examples of these previous experiments are presented to illustrate the variability of convection across the tropics.
CHUVA, meaning “rain” in Portuguese, is the acronym for the Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud-Resolving Modeling and to the Global Precipitation Measurement (GPM). The CHUVA project has conducted five field campaigns; the sixth and last campaign will be held in Manaus in 2014. The primary scientific objective of CHUVA is to contribute to the understanding of cloud processes, which represent one of the least understood components of the weather and climate system. The five CHUVA campaigns were designed to investigate specific tropical weather regimes. The first two experiments, in Alcantara and Fortaleza in northeastern Brazil, focused on warm clouds. The third campaign, which was conducted in Belém, was dedicated to tropical squall lines that often form along the sea-breeze front. The fourth campaign was in the Vale do Paraiba of southeastern Brazil, which is a region with intense lightning activity. In addition to contributing to the understanding of cloud process evolution from storms to thunderstorms, this fourth campaign also provided a high-fidelity total lightning proxy dataset for the NOAA Geostationary Operational Environmental Satellite (GOES)-R program. The fifth campaign was carried out in Santa Maria, in southern Brazil, a region of intense hailstorms associated with frequent mesoscale convective complexes. This campaign employed a multimodel high-resolution ensemble experiment. The data collected from contrasting precipitation regimes in tropical continental regions allow the various cloud processes in diverse environments to be compared. Some examples of these previous experiments are presented to illustrate the variability of convection across the tropics.