Search Results
Abstract
Observing systems consisting of a finite number of in situ monitoring stations can provide high-quality measurements with the ability to quality assure both the instruments and the data but offer limited information over larger geographic areas. This paper quantifies the spatial coverage represented by a finite set of monitoring stations by using global data—data that are possibly of lower resolution and quality. For illustration purposes, merged satellite temperature data from Microwave Sounding Units are used to estimate the representativeness of the Global Climate Observing System Reference Upper-Air Network (GRUAN). While many metrics exist for evaluating the representativeness of a site, the ability to have highly accurate monthly averaged data is essential for both trend detection and climatology evaluation. The calculated correlations of the monthly averaged upper-troposphere satellite-derived temperatures over the GRUAN stations with all other pixels around the globe show that the current 9 certified GRUAN stations have moderate correlations (r ≥ 0.7) for approximately 10% of the earth, but an expanded network incorporating another 15 stations would result in moderate correlations for just over 60% of the earth. This analysis indicates that the value of additional stations can be quantified by using historical, satellite, or model data and can be used to reveal critical gaps in current monitoring capabilities. Evaluating the value of potential additional stations and prioritizing their initiation can optimize networks. The expansion of networks can be evaluated in a manner that allows for optimal benefit on the basis of optimization theory and economic analyses.
Abstract
Observing systems consisting of a finite number of in situ monitoring stations can provide high-quality measurements with the ability to quality assure both the instruments and the data but offer limited information over larger geographic areas. This paper quantifies the spatial coverage represented by a finite set of monitoring stations by using global data—data that are possibly of lower resolution and quality. For illustration purposes, merged satellite temperature data from Microwave Sounding Units are used to estimate the representativeness of the Global Climate Observing System Reference Upper-Air Network (GRUAN). While many metrics exist for evaluating the representativeness of a site, the ability to have highly accurate monthly averaged data is essential for both trend detection and climatology evaluation. The calculated correlations of the monthly averaged upper-troposphere satellite-derived temperatures over the GRUAN stations with all other pixels around the globe show that the current 9 certified GRUAN stations have moderate correlations (r ≥ 0.7) for approximately 10% of the earth, but an expanded network incorporating another 15 stations would result in moderate correlations for just over 60% of the earth. This analysis indicates that the value of additional stations can be quantified by using historical, satellite, or model data and can be used to reveal critical gaps in current monitoring capabilities. Evaluating the value of potential additional stations and prioritizing their initiation can optimize networks. The expansion of networks can be evaluated in a manner that allows for optimal benefit on the basis of optimization theory and economic analyses.