Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Jennifer M. Comstock x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
Laura D. Riihimaki
,
Sally A. McFarlane
, and
Jennifer M. Comstock

Abstract

A 4-yr climatology of midlevel clouds is presented from vertically pointing cloud lidar and radar measurements at the Atmospheric Radiation Measurement Program (ARM) site at Darwin, Australia. Few studies exist of tropical midlevel clouds using a dataset of this length. Seventy percent of clouds with top heights between 4 and 8 km are less than 2 km thick. These thin layer clouds have a peak in cloud-top temperature around the melting level (0°C) and also a second peak around −12.5°C. The diurnal frequency of thin clouds is highest during the night and reaches a minimum around noon, consistent with variation caused by solar heating. Using a 1.5-yr subset of the observations, the authors found that thin clouds have a high probability of containing supercooled liquid water at low temperatures: ~20% of clouds at −30°C, ~50% of clouds at −20°C, and ~65% of clouds at −10°C contain supercooled liquid water. The authors hypothesize that thin midlevel clouds formed at the melting level are formed differently during active and break monsoon periods and test this over three monsoon seasons. A greater frequency of thin midlevel clouds are likely formed by increased condensation following the latent cooling of melting during active monsoon periods when stratiform precipitation is most frequent. This is supported by the high percentage (65%) of midlevel clouds with preceding stratiform precipitation and the high frequency of stable layers slightly warmer than 0°C. In the break monsoon, a distinct peak in the frequency of stable layers at 0°C matches the peak in thin midlevel cloudiness, consistent with detrainment from convection.

Full access
Betty Carlin
,
Qiang Fu
,
Ulrike Lohmann
,
Gerald G. Mace
,
Kenneth Sassen
, and
Jennifer M. Comstock

Abstract

High ice cloud horizontal inhomogeneity is examined using optical depth retrievals from four midlatitude datasets. Three datasets include ice cloud microphysical profiles derived from millimeter cloud radar at the Southern Great Plains Atmospheric Radiation Measurement site in Oklahoma. A fourth dataset combines lidar and midinfrared radiometry (LIRAD), and is from the Facility for Atmospheric Remote Sensing at the University of Utah, Salt Lake City, Utah. Plane-parallel homogeneous (PPH) calculations of domain-averaged solar albedo for these four datasets are compared to independent column approximation (ICA) results. A solar albedo bias up to 25% is found over a low reflective surface at a high solar zenith angle. A spherical solar albedo bias as high as 11% is shown. The gamma-weighted radiative transfer (GWRT) scheme is shown to be an effective correction for the solar albedo bias suitable for GCM applications. The GWRT result was, in all cases, within 1–2 W m−2 of the ICA outgoing solar flux. The GWRT requires a parameterization of the standard deviation of cloud optical depth. It is suggested that the domain-averaged cloud optical depth and ice water path together can be used in a parameterization to account for 80% of the standard deviation in optical depth.

Full access