Search Results
You are looking at 1 - 3 of 3 items for :
- Author or Editor: Jessica D. Lundquist x
- The Olympic Mountains Experiment (OLYMPEX) x
- Refine by Access: All Content x
Abstract
Estimates of precipitation from the Weather Research and Forecasting (WRF) Model and the Parameter-Elevation Regressions on Independent Slopes Model (PRISM) are widely used in complex terrain to obtain spatially distributed precipitation data. The authors evaluated both WRF (4/3 km) and PRISM’s (800-m annual climatology) ability to estimate frozen precipitation using the hydrologic model Structure for Unifying Multiple Modeling Alternatives (SUMMA) and a unique set of spatiotemporal snow depth and snow water equivalent (SWE) observations collected for the Olympic Mountain Experiment (OLYMPEX) ground validation campaign during water year 2016. When SUMMA was forced with WRF precipitation and used a calibrated, wet-bulb-temperature-based method for partitioning rain versus snow, its estimation of near-peak SWE was biased low by 21% on average. However, when SUMMA was allowed to partition WRF total precipitation into rain and snow based on output from WRF’s microphysical scheme (WRFMPP), simulations of snow depth and SWE were near equal to or better than simulations that used PRISM-derived precipitation with the calibrated partitioning method. Over all sites, WRFMPP and simulations that used PRISM-derived precipitation had relatively unbiased estimates of near-peak SWE, but both simulated absolute errors in near-peak SWE of 30%–60% at a few locations. Since, on average, WRFMPP had similar errors to PRISM, WRFMPP suggested a promising path forward in hydrology, as it was independent of gauge data and did not require SWE observations for calibration. Furthermore, in similar maritime environments, hydrologic modelers should pay close attention to decisions regarding rain-versus-snow partitioning, wind speed, and incoming longwave radiation.
Abstract
Estimates of precipitation from the Weather Research and Forecasting (WRF) Model and the Parameter-Elevation Regressions on Independent Slopes Model (PRISM) are widely used in complex terrain to obtain spatially distributed precipitation data. The authors evaluated both WRF (4/3 km) and PRISM’s (800-m annual climatology) ability to estimate frozen precipitation using the hydrologic model Structure for Unifying Multiple Modeling Alternatives (SUMMA) and a unique set of spatiotemporal snow depth and snow water equivalent (SWE) observations collected for the Olympic Mountain Experiment (OLYMPEX) ground validation campaign during water year 2016. When SUMMA was forced with WRF precipitation and used a calibrated, wet-bulb-temperature-based method for partitioning rain versus snow, its estimation of near-peak SWE was biased low by 21% on average. However, when SUMMA was allowed to partition WRF total precipitation into rain and snow based on output from WRF’s microphysical scheme (WRFMPP), simulations of snow depth and SWE were near equal to or better than simulations that used PRISM-derived precipitation with the calibrated partitioning method. Over all sites, WRFMPP and simulations that used PRISM-derived precipitation had relatively unbiased estimates of near-peak SWE, but both simulated absolute errors in near-peak SWE of 30%–60% at a few locations. Since, on average, WRFMPP had similar errors to PRISM, WRFMPP suggested a promising path forward in hydrology, as it was independent of gauge data and did not require SWE observations for calibration. Furthermore, in similar maritime environments, hydrologic modelers should pay close attention to decisions regarding rain-versus-snow partitioning, wind speed, and incoming longwave radiation.
Abstract
To provide ground validation data for satellite precipitation products derived from the Global Precipitation Measurement (GPM) mission, such as IMERG, in cold seasons and where orographic factors exert strong controls on precipitation, the Olympic Mountain Experiment (OLYMPEX) was conducted during winter 2015/16. By utilizing multiple observational resources from OLYMPEX, estimates of daily and finer-scale precipitation are constructed at 1/32° spatial resolution over the OLYMPEX domain. The estimates are based on NOAA WSR-88D and gauge estimates as incorporated in NOAA’s National Severe Storms Laboratory (NSSL) Q3GC product, augmented with an additional 120 gauges available during OLYMPEX. Few stations are located in the interior of the Olympic Peninsula at elevations higher than about 500 m, and in this part of the domain the Variable Infiltration Capacity (VIC) hydrology model is used to invert the snow water equivalent (SWE) estimates, derived from two NASA JPL Airborne Snow Observatory (ASO) snow depth maps on 8–9 February 2016 and 29–30 March 2016, for precipitation through adjustment of the precipitation-weighting factor on a grid cell by grid cell basis. In comparison with this composite product, both IMERG (version 04A) and its Japanese counterpart GSMaP’s (version 04B) satellite-only products tend to underestimate winter precipitation, by 41% and 28%, respectively, over the entire domain from 1 October 2015 to 30 April 2016. The underestimation is more pronounced for the orographically enhanced mountainous interior of the OLYMPEX domain, by 57% and 48%, respectively. In contrast, IMERG and GSMaP storm interarrival time statistics are quite similar to those estimated from gridded observations.
Abstract
To provide ground validation data for satellite precipitation products derived from the Global Precipitation Measurement (GPM) mission, such as IMERG, in cold seasons and where orographic factors exert strong controls on precipitation, the Olympic Mountain Experiment (OLYMPEX) was conducted during winter 2015/16. By utilizing multiple observational resources from OLYMPEX, estimates of daily and finer-scale precipitation are constructed at 1/32° spatial resolution over the OLYMPEX domain. The estimates are based on NOAA WSR-88D and gauge estimates as incorporated in NOAA’s National Severe Storms Laboratory (NSSL) Q3GC product, augmented with an additional 120 gauges available during OLYMPEX. Few stations are located in the interior of the Olympic Peninsula at elevations higher than about 500 m, and in this part of the domain the Variable Infiltration Capacity (VIC) hydrology model is used to invert the snow water equivalent (SWE) estimates, derived from two NASA JPL Airborne Snow Observatory (ASO) snow depth maps on 8–9 February 2016 and 29–30 March 2016, for precipitation through adjustment of the precipitation-weighting factor on a grid cell by grid cell basis. In comparison with this composite product, both IMERG (version 04A) and its Japanese counterpart GSMaP’s (version 04B) satellite-only products tend to underestimate winter precipitation, by 41% and 28%, respectively, over the entire domain from 1 October 2015 to 30 April 2016. The underestimation is more pronounced for the orographically enhanced mountainous interior of the OLYMPEX domain, by 57% and 48%, respectively. In contrast, IMERG and GSMaP storm interarrival time statistics are quite similar to those estimated from gridded observations.
Abstract
The Olympic Mountains Experiment (OLYMPEX) took place during the 2015/16 fall–winter season in the vicinity of the mountainous Olympic Peninsula of Washington State. The goals of OLYMPEX were to provide physical and hydrologic ground validation for the U.S.–Japan Global Precipitation Measurement (GPM) satellite mission and, more specifically, to study how precipitation in Pacific frontal systems is modified by passage over coastal mountains. Four transportable scanning dual-polarization Doppler radars of various wavelengths were installed. Surface stations were placed at various altitudes to measure precipitation rates, particle size distributions, and fall velocities. Autonomous recording cameras monitored and recorded snow accumulation. Four research aircraft supplied by NASA investigated precipitation processes and snow cover, and supplemental rawinsondes and dropsondes were deployed during precipitation events. Numerous Pacific frontal systems were sampled, including several reaching “atmospheric river” status, warm- and cold-frontal systems, and postfrontal convection.
Abstract
The Olympic Mountains Experiment (OLYMPEX) took place during the 2015/16 fall–winter season in the vicinity of the mountainous Olympic Peninsula of Washington State. The goals of OLYMPEX were to provide physical and hydrologic ground validation for the U.S.–Japan Global Precipitation Measurement (GPM) satellite mission and, more specifically, to study how precipitation in Pacific frontal systems is modified by passage over coastal mountains. Four transportable scanning dual-polarization Doppler radars of various wavelengths were installed. Surface stations were placed at various altitudes to measure precipitation rates, particle size distributions, and fall velocities. Autonomous recording cameras monitored and recorded snow accumulation. Four research aircraft supplied by NASA investigated precipitation processes and snow cover, and supplemental rawinsondes and dropsondes were deployed during precipitation events. Numerous Pacific frontal systems were sampled, including several reaching “atmospheric river” status, warm- and cold-frontal systems, and postfrontal convection.