Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Jia Hu x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
Lei Wang
,
Tandong Yao
,
Chenhao Chai
,
Lan Cuo
,
Fengge Su
,
Fan Zhang
,
Zhijun Yao
,
Yinsheng Zhang
,
Xiuping Li
,
Jia Qi
,
Zhidan Hu
,
Jingshi Liu
, and
Yuanwei Wang

Abstract

Monitoring changes in river runoff at the Third Pole (TP) is important because rivers in this region support millions of inhabitants in Asia and are very sensitive to climate change. Under the influence of climate change and intensified cryospheric melt, river runoff has changed markedly at the TP, with significant effects on the spatial and temporal water resource distribution that threaten water supply and food security for people living downstream. Despite some in situ observations and discharge estimates from state-of-the-art remote sensing technology, the total river runoff (TRR) for the TP has never been reliably quantified, and its response to climate change remains unclear. As part of the Chinese Academy of Sciences’ “Pan-Third Pole Environment Study for a Green Silk Road,” the TP-River project aims to construct a comprehensive runoff observation network at mountain outlets (where rivers leave the mountains and enter the plains) for 13 major rivers in the TP region, thereby enabling TRR to be accurately quantified. The project also integrates discharge estimates from remote sensing and cryosphere–hydrology modeling to investigate long-term changes in TRR and the relationship between the TRR variations and westerly/monsoon. Based on recent efforts, the project provides the first estimate (656 ± 23 billion m3) of annual TRR for the 13 TP rivers in 2018. The annual river runoff at the mountain outlets varies widely between the different TP rivers, ranging from 2 to 176 billion m3, with higher values mainly corresponding to rivers in the Indian monsoon domain, rather than in the westerly domain.

Open access
Jielun Sun
,
Steven P. Oncley
,
Sean P. Burns
,
Britton B. Stephens
,
Donald H. Lenschow
,
Teresa Campos
,
Russell K. Monson
,
David S. Schimel
,
William J. Sacks
,
Stephan F. J. De Wekker
,
Chun-Ta Lai
,
Brian Lamb
,
Dennis Ojima
,
Patrick Z. Ellsworth
,
Leonel S. L. Sternberg
,
Sharon Zhong
,
Craig Clements
,
David J. P. Moore
,
Dean E. Anderson
,
Andrew S. Watt
,
Jia Hu
,
Mark Tschudi
,
Steven Aulenbach
,
Eugene Allwine
, and
Teresa Coons

A significant fraction of Earth consists of mountainous terrain. However, the question of how to monitor the surface–atmosphere carbon exchange over complex terrain has not been fully explored. This article reports on studies by a team of investigators from U.S. universities and research institutes who carried out a multiscale and multidisciplinary field and modeling investigation of the CO2 exchange between ecosystems and the atmosphere and of CO2 transport over complex mountainous terrain in the Rocky Mountain region of Colorado. The goals of the field campaign, which included ground and airborne in situ and remote-sensing measurements, were to characterize unique features of the local CO2 exchange and to find effective methods to measure regional ecosystem–atmosphere CO2 exchange over complex terrain. The modeling effort included atmospheric and ecological numerical modeling and data assimilation to investigate regional CO2 transport and biological processes involved in ecosystem–atmosphere carbon exchange. In this report, we document our approaches, demonstrate some preliminary results, and discuss principal patterns and conclusions concerning ecosystem–atmosphere carbon exchange over complex terrain and its relation to past studies that have considered these processes over much simpler terrain.

Full access