Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Jie Feng x
  • Tropical Cyclone Intensity Experiment (TCI) x
  • Refine by Access: All Content x
Clear All Modify Search
Jie Feng
and
Xuguang Wang

Abstract

The dropsondes released during the Tropical Cyclone Intensity (TCI) field campaign provide high-resolution kinematic and thermodynamic measurements of tropical cyclones within the upper-level outflow and inner core. This study investigates the impact of these upper-level TCI dropsondes on analyses and prediction of Hurricane Patricia (2015) during its rapid intensification (RI) phase using an ensemble–variational data assimilation system. In the baseline experiment (BASE), both kinematic and thermodynamic observations of TCI dropsondes at all levels except the upper levels are assimilated. The upper-level wind and thermodynamic observations are assimilated in additional experiments to investigate their respective impacts. Compared to BASE, assimilating TCI upper-level wind observations improves the accuracy of outflow analyses verified against independent atmospheric motion vector (AMV) observations. It also strengthens the tangential and radial wind near the upper-level eyewall. The inertial stability within the upper-level eyewall is enhanced, and the maximum outflow is more aligned toward the inner core. Additionally, the analyses including the upper-level thermodynamic observations produce a warmer and drier core at high levels. Assimilating both upper-level kinematic and thermodynamic observations also improves the RI forecast. Compared to BASE, assimilating the upper-level wind induces more upright and inward-located eyewall convection, resulting in more latent heat release closer to the warm core. This process leads to stronger inner-core warming. Additionally, the initial warmer upper-level inner core produced by assimilating TCI thermodynamic observations also intensifies the convection and latent heat release within the eyewall, thus further contributing to the improved intensity forecasts.

Full access
Jie Feng
and
Xuguang Wang

Abstract

Although numerous studies have demonstrated that increasing model spatial resolution in free forecasts can potentially improve tropical cyclone (TC) intensity forecasts, studies on the impact of model resolution during data assimilation (DA) on TC prediction are lacking. In this study, using the ensemble-variational DA system for the Hurricane Weather Research and Forecasting (HWRF) Model, we investigated the individual impact of increasing the model resolution of first guess (FG) and background ensemble (BE) forecasts during DA on initial analyses and subsequent forecasts of Hurricane Patricia (2015). The impacts were compared between horizontal and vertical resolutions and also between the tropical storm (TS) and hurricane assimilation during Patricia. The results show that increasing the horizontal or vertical resolution in FG has a larger impact than increasing the resolution in BE on improving the analyzed TC intensity and structure for the hurricane stage. The result is reversed for the TS stage. These results are attributed to the effectiveness of increasing the FG resolution in intensifying the background vortex for the hurricane stage relative to the TS stage. Increasing the BE resolution contributes to improving the analyzed intensity through the better-resolved background correlation structure for both the hurricane and TS stages. Increasing horizontal resolution has an overall larger effect than increasing vertical resolution in improving the analysis at the hurricane stage and their effects are close for the analysis at the TS stage. Additionally, the more accurately analyzed primary circulation, secondary circulation, and warm-core structures via the increased resolution in DA lead to improved TC intensity forecasts.

Full access