Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: Jie Feng x
- Weather and Forecasting x
- Refine by Access: All Content x
Abstract
Operational and research applications generally use the consensus approach for forecasting the track and intensity of tropical cyclones (TCs) due to the spatial displacement of the TC location and structure in ensemble member forecasts. This approach simply averages the location and intensity information for TCs in individual ensemble members, which is distinct from the traditional pointwise arithmetic mean (AM) method for ensemble forecast fields. The consensus approach, despite having improved skills relative to the AM in predicting the TC intensity, cannot provide forecasts of the TC spatial structure. We introduced a unified TC ensemble mean forecast based on the feature-oriented mean (FM) method to overcome the inconsistency between the AM and consensus forecasts. FM spatially aligns the TC-related features in each ensemble field to their geographical mean positions before the amplitude of their features is averaged. We select 219 TC forecast samples during the summer of 2017 for an overall evaluation of the FM performance. The results show that the TC track consensus forecasts can differ from AM track forecasts by hundreds of kilometers at long lead times. AM also gives a systematic and statistically significant underestimation of the TC intensity compared with the consensus forecast. By contrast, FM has a very similar TC track and intensity forecast skill to the consensus approach. FM can also provide the corresponding ensemble mean forecasts of the TC spatial structure that are significantly more accurate than AM for the low- and upper-level circulation in TCs. The FM method has the potential to serve as a valuable unified ensemble mean approach for the TC prediction.
Abstract
Operational and research applications generally use the consensus approach for forecasting the track and intensity of tropical cyclones (TCs) due to the spatial displacement of the TC location and structure in ensemble member forecasts. This approach simply averages the location and intensity information for TCs in individual ensemble members, which is distinct from the traditional pointwise arithmetic mean (AM) method for ensemble forecast fields. The consensus approach, despite having improved skills relative to the AM in predicting the TC intensity, cannot provide forecasts of the TC spatial structure. We introduced a unified TC ensemble mean forecast based on the feature-oriented mean (FM) method to overcome the inconsistency between the AM and consensus forecasts. FM spatially aligns the TC-related features in each ensemble field to their geographical mean positions before the amplitude of their features is averaged. We select 219 TC forecast samples during the summer of 2017 for an overall evaluation of the FM performance. The results show that the TC track consensus forecasts can differ from AM track forecasts by hundreds of kilometers at long lead times. AM also gives a systematic and statistically significant underestimation of the TC intensity compared with the consensus forecast. By contrast, FM has a very similar TC track and intensity forecast skill to the consensus approach. FM can also provide the corresponding ensemble mean forecasts of the TC spatial structure that are significantly more accurate than AM for the low- and upper-level circulation in TCs. The FM method has the potential to serve as a valuable unified ensemble mean approach for the TC prediction.
Abstract
Ensemble prediction is a widely used tool in weather forecasting. In particular, the arithmetic mean (AM) of ensemble members is used to filter out unpredictable features from a forecast. AM is a pointwise statistical concept, providing the best sample-based estimate of the expected value of any single variable. The atmosphere, however, is a multivariate system with spatially coherent features characterized with strong correlations. Disregarding such correlations, the AM of an ensemble of forecasts removes not only unpredictable noise but also flattens features whose presence is still predictable, albeit with somewhat uncertain location. As a consequence, AM destroys the structure, and reduces the amplitude and variability associated with partially predictable features. Here we explore the use of an alternative concept of central tendency for the estimation of the expected feature (instead of single values) in atmospheric systems. Features that are coherent across ensemble members are first collocated to their mean position, before the AM of the aligned members is taken. Unlike earlier definitions based on complex variational minimization (field coalescence of Ravela and generalized ensemble mean of Purser), the proposed feature-oriented mean (FM) uses simple and computationally efficient vector operations. Though FM is still not a dynamically realizable state, a preliminary evaluation of ensemble geopotential height forecasts indicates that it retains more variance than AM, without a noticeable drop in skill. Beyond ensemble forecasting, possible future applications include a wide array of climate studies where the collocation of larger-scale features of interest may yield enhanced compositing results.
Abstract
Ensemble prediction is a widely used tool in weather forecasting. In particular, the arithmetic mean (AM) of ensemble members is used to filter out unpredictable features from a forecast. AM is a pointwise statistical concept, providing the best sample-based estimate of the expected value of any single variable. The atmosphere, however, is a multivariate system with spatially coherent features characterized with strong correlations. Disregarding such correlations, the AM of an ensemble of forecasts removes not only unpredictable noise but also flattens features whose presence is still predictable, albeit with somewhat uncertain location. As a consequence, AM destroys the structure, and reduces the amplitude and variability associated with partially predictable features. Here we explore the use of an alternative concept of central tendency for the estimation of the expected feature (instead of single values) in atmospheric systems. Features that are coherent across ensemble members are first collocated to their mean position, before the AM of the aligned members is taken. Unlike earlier definitions based on complex variational minimization (field coalescence of Ravela and generalized ensemble mean of Purser), the proposed feature-oriented mean (FM) uses simple and computationally efficient vector operations. Though FM is still not a dynamically realizable state, a preliminary evaluation of ensemble geopotential height forecasts indicates that it retains more variance than AM, without a noticeable drop in skill. Beyond ensemble forecasting, possible future applications include a wide array of climate studies where the collocation of larger-scale features of interest may yield enhanced compositing results.