Search Results

You are looking at 1 - 9 of 9 items for :

  • Author or Editor: Jin-Song von Storch x
  • Journal of Physical Oceanography x
  • Refine by Access: All Content x
Clear All Modify Search
Hongmei Li
and
Jin-Song von Storch

Abstract

Subgrid-scale fluctuations with zero means have generally been neglected in ocean modeling, despite their potential role in affecting the oceanic state following Hasselmann's seminal paper on stochastic climate models and series of studies conducted thereafter. When representing effects of these fluctuations in a stochastic parameterization, knowledge of basic properties of these fluctuations is essential. Here, the authors quantify these properties using hourly output of a simulation performed with a global OGCM. This study found that fluctuating buoyancy fluxes are strong in the sense that their strengths are up to one order of magnitude larger than the magnitudes of the respective mean eddy fluxes and that the fluctuations originate not only from mesoscale eddies and tropical instability waves but also from near-inertial waves, especially in the low- and midlatitude oceans. It is this wave contribution that makes the basic properties of fluctuations distinctly different from those expected from mesoscale eddies. The geographical distribution of fluctuation intensity differs from that of mesoscale eddy activity and is strongest in the low- and midlatitude oceans complemented by additional and secondary maxima in the Gulf Stream, the Kuroshio, and the Southern Ocean. The seasonality in most of the low- and midlatitude oceans, characterized by stronger fluctuations in winter than in summer, is just the opposite of that of mesoscale eddies. In the tropical oceans, the correlation length scales reach 500 km in the zonal direction but only about 30–40 km in the meridional direction, reflecting near-inertial waves with nearly zonally oriented wavecrests. Overall, these results provide an important basis for stochastically describing the effects of subgrid-scale fluctuations.

Full access
Veit Lüschow
and
Jin-Song von Storch

Abstract

The simple scaling relation for internal-tide generation proposed by Jayne and St. Laurent is widely used for parameterizing turbulent mixing induced by breaking of internal tides. Based on the internal-tide generation derived from a 0.1° ocean general circulation model, we show that depending on which stratification is used, this relation produces different vertical distributions of internal-tide generation. When using the buoyancy frequency at the seafloor, which is a common practice, the scaling relation produces, relative to the model, too-strong internal-tide generation in the upper 2000 m and too-weak internal-tide generation in the lower 2000 m. Moreover, the different vertical distributions in the different ocean basins, characterized by a generally decreasing internal tide generation with increasing depth in the Indo-Pacific but not-decreasing or even increasing internal tide generation with increasing depth in the upper 3000 m of the Atlantic, cannot be captured when using bottom stratification. These unsatisfactory features can be easily removed by replacing the buoyancy frequency at the seafloor by a buoyancy frequency averaged over a large part of the water column. To our knowledge, this sensitivity to stratification has not been explicitly quantified for the global ocean. Because of this sensitivity, the scaling relation of Jayne and St. Laurent should be used with an averaged stratification to ensure a more adequate representation of turbulent diffusivity due to tidal mixing and water mass transformation in the deep oceans.

Open access
Jin-Song von Storch
,
Hideharu Sasaki
, and
Jochem Marotzke

Abstract

Recent studies on the wind-generated power input to the geostrophic and nongeostrophic ocean circulation components have used expressions derived from Ekman dynamics. The present work extends and unifies previous studies by deriving an expression from the kinetic energy budget of the upper layer based on the primitive equations. Using this expression, the wind-generated power available to the deep ocean is estimated from an integration with the 1/10° ocean general circulation model of the Earth Simulator Center. The result shows that the total power generated by the wind at the sea surface is about 3.8 TW. About 30% of this power (1.1 TW) is passed through a surface layer of about 110-m thickness to the ocean beneath. Approximating the wind-generated power to the deep ocean using Ekman dynamics produces two large errors of opposite signs, which cancel each other to a large extent.

Full access
Antonija Rimac
,
Jin-Song von Storch
, and
Carsten Eden

Abstract

The total energy flux leaving the ocean’s spatially and seasonally varying mixed layer is estimated using a global ⅝1/10° ocean general circulation model. From the total wind-power input of 3.33 TW into near-inertial waves (0.35 TW), subinertial fluctuations (0.87 TW), and the time-mean circulation (2.11 TW), 0.92 TW leave the mixed layer, with 0.04 TW (11.4%) due to near-inertial motions, 0.07 TW (8.04%) due to subinertial fluctuations, and 0.81 TW (38.4%) due to time-mean motions. Of the 0.81 TW from the time-mean motions, 0.5 TW result from the projection of the horizontal flux onto the sloped bottom of the mixed layer. This projection is negligible for the transient fluxes. The spatial structure of the vertical flux is determined principally by the wind stress curl. The mean and subinertial fluxes leaving the mixed layer are approximately 40%–50% smaller than the respective fluxes across the Ekman layer according to the method proposed by Stern. The fraction related to transient fluctuations tends to decrease with increasing depth of the mixed layer and with increasing strength of wind stress variability.

Full access
Zhuhua Li
,
Jin-Song von Storch
, and
Malte Müller

Abstract

Using a concurrent simulation of the ocean general circulation and tides with the ° Max Planck Institute Ocean Model (MPI-OM), known as STORMTIDE, this study provides a near-global quantification of the low-mode M2 internal tides. The quantification is based on wavelengths and their near-global distributions obtained by applying spectral analysis to STORMTIDE velocities and on comparisons of the distributions with those derived by solving the Sturm–Liouville eigenvalue problem. The simulated wavelengths, with respect to both their magnitudes and their geographical distributions, compare well with those obtained by solving the eigenvalue problem, suggesting that the STORMTIDE internal waves are, to a first approximation, linear internal waves satisfying local dispersion relations. The simulated wavelengths of modes 1 and 2 range within 100–160 and 45–80 km, respectively. Their distributions reveal, to different degrees for both modes, a zonal asymmetry and a tendency of a poleward increase with stratification N and the Coriolis parameter f being responsible for these two features, respectively. Distributions of mode 1 wavelengths are found to be determined by both N and f, but those of mode 2 are mainly controlled by variations in N. Larger differences between the STORMTIDE wavelengths and those of the eigenvalue problem occur, particularly for mode 2, primarily in high-latitude oceans and the Kuroshio and Gulf Stream and their extensions.

Full access
Veit Lüschow
,
Jochem Marotzke
, and
Jin-Song von Storch

Abstract

In this paper, the overturning responses to wind stress changes of an eddying ocean and a non-eddying ocean are compared. Differences are found in the deep overturning cell in the low-latitude North Atlantic Ocean with substantial implications for the deep western boundary current (DWBC). In an ocean-only twin experiment with one eddying and one non-eddying configuration of the MPI ocean model, two different forcings are being applied: the standard NCEP forcing and the NCEP forcing with 2× surface wind stress. The response to the wind stress doubling in the Atlantic meridional overturning circulation is similar in the eddying and the non-eddying configuration, showing an increase by about 4 Sv (~25%; 1 Sv ≡ 106 m3 s−1). In contrast, the DWBC responds with a speedup in the non-eddying configuration and a slowdown in the eddying configuration. This paper demonstrates that the DWBC slowdown in the eddying configuration is largely balanced by eddy vorticity fluxes. Because those fluxes are not resolved and also not captured by an eddy parameterization in the non-eddying configuration, such a DWBC slowdown is likely not to occur in non-eddying ocean models, which therefore might not capture the whole range of overturning responses. Furthermore, evidence is provided that the balancing effect of the eddies is not a passive reaction to a remotely triggered DWBC slowdown. Instead, deep eddies that are sourced from the upper ocean provide an excess input of relative vorticity that then actively forces the DWBC mean flow to slow down.

Open access
Veit Lüschow
,
Jin-Song von Storch
, and
Jochem Marotzke

Abstract

Using a 0.1° ocean model, this paper establishes a consistent picture of the interaction of mesoscale eddy density fluxes with the geostrophic deep western boundary current (DWBC) in the Atlantic between 26°N and 20°S. Above the DWBC core (the level of maximum southward flow, ~2000-m depth), the eddies flatten isopycnals and hence decrease the potential energy of the mean flow, which agrees with their interpretation and parameterization in the Gent–McWilliams framework. Below the core, even though the eddy fluxes have a weaker magnitude, they systematically steepen isopycnals and thus feed potential energy to the mean flow, which contradicts common expectations. These two vertically separated eddy regimes are found through an analysis of the eddy density flux divergence in stream-following coordinates. In addition, pathways of potential energy in terms of the Lorenz energy cycle reveal this regime shift. The twofold eddy effect on density is balanced by an overturning in the plane normal to the DWBC. Its direction is clockwise (with upwelling close to the shore and downwelling further offshore) north of the equator. In agreement with the sign change in the Coriolis parameter, the overturning changes direction to anticlockwise south of the equator. Within the domain covered in this study, except in a narrow band around the equator, this scenario is robust along the DWBC.

Full access
Jin-Song von Storch
,
Carsten Eden
,
Irina Fast
,
Helmuth Haak
,
Daniel Hernández-Deckers
,
Ernst Maier-Reimer
,
Jochem Marotzke
, and
Detlef Stammer

Abstract

This paper presents an estimate of the oceanic Lorenz energy cycle derived from a simulation forced by 6-hourly fluxes obtained from NCEP–NCAR reanalysis-1. The total rate of energy generation amounts to 6.6 TW, of which 1.9 TW is generated by the time-mean winds and 2.2 TW by the time-varying winds. The dissipation of kinetic energy amounts to 4.4 TW, of which 3 TW originate from the dissipation of eddy kinetic energy. The energy exchange between reservoirs is dominated by the baroclinic pathway and the pathway that distributes the energy generated by the time-mean winds. The former converts 0.7 to 0.8 TW mean available potential energy to eddy available potential energy and finally to eddy kinetic energy, whereas the latter converts 0.5 TW mean kinetic energy to mean available potential energy.

This energy cycle differs from the atmospheric one in two aspects. First, the generation of the mean kinetic and mean available potential energy is each, to a first approximation, balanced by the dissipation. The interaction of the oceanic general circulation with mesoscale eddies is hence less crucial than the corresponding interaction in the atmosphere. Second, the baroclinic pathway in the ocean is facilitated not only by the surface buoyancy flux but also by the winds through a conversion of 0.5 TW mean kinetic energy to mean available potential energy. In the atmosphere, the respective conversion is almost absent and the baroclinic energy pathway is driven solely by the differential heating.

Full access
Dongliang Yuan
,
Xiang Li
,
Zheng Wang
,
Yao Li
,
Jing Wang
,
Ya Yang
,
Xiaoyue Hu
,
Shuwen Tan
,
Hui Zhou
,
Adhitya Kusuma Wardana
,
Dewi Surinati
,
Adi Purwandana
,
Mochamad Furqon Azis Ismail
,
Praditya Avianto
,
Dirham Dirhamsyah
,
Zainal Arifin
, and
Jin-Song von Storch

Abstract

The Maluku Channel is a major opening of the eastern Indonesian Seas to the western Pacific Ocean, the upper-ocean currents of which have rarely been observed historically. During December 2012–November 2016, long time series of the upper Maluku Channel transport are measured successfully for the first time using subsurface oceanic moorings. The measurements show significant intraseasonal-to-interannual variability of over 14 Sv (1 Sv ≡ 106 m3 s−1) in the upper 300 m or so, with a mean transport of 1.04–1.31 Sv northward and a significant southward interannual change of over 3.5 Sv in the spring of 2014. Coincident with the interannual transport change is the Mindanao Current, choked at the entrance of the Indonesian Seas, which is significantly different from its climatological retroflection in fall–winter. A high-resolution numerical simulation suggests that the variations of the Maluku Channel currents are associated with the shifting of the Mindanao Current retroflection. It is suggested that the shifting of the Mindanao Current outside the Sulawesi Sea in the spring of 2014 elevates the sea level at the entrance of the Indonesian Seas, which drives the anomalous transport through the Maluku Channel. The results suggest the importance of the western boundary current nonlinearity in driving the transport variability of the Indonesian Throughflow.

Full access