Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Jing Zhang x
  • Journal of the Atmospheric Sciences x
  • Refine by Access: All Content x
Clear All Modify Search
Hua Zhang
,
Haibo Wang
,
Yangang Liu
,
Xianwen Jing
, and
Yi Liu

Abstract

Cloud albedo is expected to influence cloud radiative forcing in addition to cloud fraction, and inadequate description of the cloud overlapping effects on the cloud fraction may influence the simulated cloud fraction, and thus the relative cloud radiative forcing (RCRF) and cloud albedo. In this study, we first present a new formula by extending that presented previously to consider multilayer clouds directly in the relationship between cloud albedo, cloud fraction, and RCRF, and then quantitatively evaluate the effects of different cloud vertical overlapping structures, represented by the decorrelation length scales (L cf), on the simulated cloud albedos. We use the BCC_AGCM2.0_CUACE/Aero model with simultaneous validation by observations from the Clouds and the Earth’s Radiation Energy System (CERES) satellite. When L cf < 4 km (i.e., the cloud overlap is closer to the random overlap), the simulated cloud albedos are generally in good agreement with the satellite-based albedos for December–February and June–August; when L cf ≥ 4 km (i.e., the cloud vertical overlap is closer to the maximum overlap), the difference between simulated and observed cloud albedos became larger, due mainly to significant differences in cloud fractions and RCRF. Further quantitative analysis shows that the relative Euclidean distance, which represents the degree of overall model–observation disagreement, increases with the L cf for all three variables (cloud albedo, cloud fraction, and RCRF), indicating the importance of cloud vertical overlapping in determining the accuracy of the calculated cloud albedo for multilayer clouds.

Significance Statement

The purpose of this study is presenting a new formula to consider multilayer clouds directly in the relationship between cloud albedo, cloud fraction, and relative cloud radiative forcing (RCRF). This is important because the effects of different cloud vertical overlapping structures, represented by the decorrelation length scales (L cf), can affect the simulated cloud albedos. Our results provide a guide on the importance of cloud vertical overlapping in determining the accuracy of the calculated cloud albedo for multilayer clouds.

Restricted access
Jiawenjing Lan
,
Jun Yang
,
Yongyun Hu
,
Xiang Li
,
Jiaqi Guo
,
Qifan Lin
,
Jing Han
,
Jian Zhang
,
Shuang Wang
, and
Ji Nie

Abstract

For modern Earth, the annual-mean equatorial winds in the upper troposphere are flowing from east to west (i.e., easterly winds). This is mainly due to the deceleration effect of the seasonal cross-equatorial Hadley cells, against the relatively weaker acceleration effect of coupled Rossby and Kelvin waves excited from tropical convection and latent heat release. In this work, we examine the evolution of equatorial winds during the past 250 million years using one global Earth system model, the Community Earth System Model version 1.2.2 (CESM1.2.2). Three climatic factors different from the modern Earth—solar constant, atmospheric CO2 concentration, and land–sea configuration—are considered in the simulations. We find that the upper-tropospheric equatorial winds change sign to westerly flows (called equatorial superrotation) in certain eras, such as 250–230 and 150–50 Ma. The strength of the superrotation is below 4 m s−1, comparable to the magnitude of the present-day easterly winds. In general, this phenomenon occurs in a warmer climate within which the tropical atmospheric circulation shifts upward in altitude, stationary and/or transient eddies are relatively stronger, and/or the Hadley cells are relatively weaker, which in turn are due to the changes of the three factors, especially CO2 concentration and land–sea configuration.

Free access
Shaofeng Hua
,
Baojun Chen
,
Yubao Liu
,
Gang Chen
,
Yang Yang
,
Xiaobo Dong
,
Zhen Zhao
,
Yang Gao
,
Xu Zhou
,
Rong Zhang
, and
Jing Duan

Abstract

Airborne microphysical measurements of a frontal precipitation event in North China were used to evaluate five microphysics schemes for predicting the bulk properties of ice particles. They are the Morrison and Thompson schemes, which use predetermined categories, the 1-ice- and 2-ice-category configurations of the Predicted Particle Properties (P3) scheme and the Ice-Spheroids Habit Model with Aspect-Ratio Evolution (ISHMAEL) scheme, which model the evolution of particle properties, and the spectral bin fast version (SBM_fast) microphysics scheme within the Weather Research and Forecasting (WRF) Model. WRF simulations with these schemes successfully reproduced the observed temperature and the liquid and total water content profiles at corresponding times and locations, allowing for a credible comparison of the predictions of particle properties with the aircraft measurements. The simulated results with the 1-ice-category P3 scheme are in good agreement with the observations for all the particle properties we examined. The 2-ice-category P3 scheme overestimates the spectrum width and underestimates the number concentration, which can be alleviated by reducing the ice collection efficiency. The simulation with the SBM_fast scheme deviates from the observed ice particle size distributions since the mass–diameter relationship of snow-sized particles adopted in this scheme may not be applicable to this stratiform cloud case.

Free access