Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Jing Zhang x
  • Monthly Weather Review x
  • Refine by Access: All Content x
Clear All Modify Search
Fuhong Liu
,
Jeremy R. Krieger
, and
Jing Zhang

Abstract

The Weather Research and Forecasting Model (WRF) and its variational data assimilation system (WRFDA) are applied to the Chukchi–Beaufort Seas and adjacent Arctic Slope region for high-resolution regional atmospheric reanalysis study. To optimize WRFDA performance over the study area, a set of sensitivity experiments are carried out to analyze the model sensitivity to model background errors (BEs) and the assimilation of various observational datasets. Observational data are assimilated every 6 h and the results are verified against unassimilated observations. In the BE sensitivity analyses, the results of assimilating in situ surface observations with a customized, domain-dependent BE are compared to those using the WRF-provided global BE. It is found that the customized BE is necessary in order to achieve positive impacts from WRFDA assimilation for the study area. When seasonal variability is incorporated into the customized BE, the impacts are minor. Sensitivity analyses examining the assimilation of different datasets via WRFDA demonstrate that 1) positive impacts are always seen through the assimilation of in situ surface and radiosonde measurements, 2) assimilating Quick Scatterometer (QuikSCAT) winds improves the simulation of the 10-m wind field over ocean and coastal areas, and 3) selectively assimilating Moderate Resolution Imaging Spectroradiometer (MODIS) retrieved profiles under clear-sky and snow-free conditions is essential to avoid degradation of assimilation performance, while assimilation of Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) retrievals has little impact, most likely due to limited data availability. Based on the sensitivity results, a 1-yr (2009) experimental reanalysis is conducted and consistent improvements are achieved, particularly in capturing mesoscale processes such as mountain barrier and sea-breeze effects.

Full access
Hong-Bo Liu
,
Jing Yang
,
Da-Lin Zhang
, and
Bin Wang

Abstract

During the mei-yu season of the summer of 2003, the Yangtze and Huai River basin (YHRB) encountered anomalously heavy rainfall, and the northern YHRB (nYHRB) suffered a severe flood because of five continuous extreme rainfall events. A spectral analysis of daily rainfall data over YHRB reveals two dominant frequency modes: one peak on day 14 and the other on day 4 (i.e., the quasi-biweekly and synoptic-scale mode, respectively). Results indicate that the two scales of disturbances contributed southwesterly and northeasterly anomalies, respectively, to the mei-yu frontal convergence over the southern YHRB (sYHRB) at the peak wet phase. An analysis of bandpass-filtered circulations shows that the lower and upper regions of the troposphere were fully coupled at the quasi-biweekly scale, and a lower-level cyclonic anomaly over sYHRB was phase locked with an anticyclonic anomaly over the Philippines. At the synoptic scale, the strong northeasterly components of an anticyclonic anomaly with a deep cold and dry layer helped generate the heavy rainfall over sYHRB. Results also indicate the passages of five synoptic-scale disturbances during the nYHRB rainfall. Like the sYHRB rainfall, these disturbances originated from the periodical generations of cyclonic and anticyclonic anomalies at the downstream of the Tibetan Plateau. The nYHRB rainfalls were generated as these disturbances moved northeastward under the influence of monsoonal flows and higher-latitude eastward-propagating Rossby wave trains. It is concluded that the sYHRB heavy rainfall resulted from the superposition of quasi-biweekly and synoptic-scale disturbances, whereas the intermittent passages of five synoptic-scale disturbances led to the flooding rainfall over nYHRB.

Full access
Jingzhuo Wang
,
Jing Chen
,
Jun Du
,
Yutao Zhang
,
Yu Xia
, and
Guo Deng

Abstract

This study demonstrates how model bias can adversely affect the quality assessment of an ensemble prediction system (EPS) by verification metrics. A regional EPS [Global and Regional Assimilation and Prediction Enhanced System-Regional Ensemble Prediction System (GRAPES-REPS)] was verified over a period of one month over China. Three variables (500-hPa and 2-m temperatures, and 250-hPa wind) are selected to represent “strong” and “weak” bias situations. Ensemble spread and probabilistic forecasts are compared before and after a bias correction. The results show that the conclusions drawn from ensemble verification about the EPS are dramatically different with or without model bias. This is true for both ensemble spread and probabilistic forecasts. The GRAPES-REPS is severely underdispersive before the bias correction but becomes calibrated afterward, although the improvement in the spread’s spatial structure is much less; the spread–skill relation is also improved. The probabilities become much sharper and almost perfectly reliable after the bias is removed. Therefore, it is necessary to remove forecast biases before an EPS can be accurately evaluated since an EPS deals only with random error but not systematic error. Only when an EPS has no or little forecast bias, can ensemble verification metrics reliably reveal the true quality of an EPS without removing forecast bias first. An implication is that EPS developers should not be expected to introduce methods to dramatically increase ensemble spread (either by perturbation method or statistical calibration) to achieve reliability. Instead, the preferred solution is to reduce model bias through prediction system developments and to focus on the quality of spread (not the quantity of spread). Forecast products should also be produced from the debiased but not the raw ensemble.

Open access
Juanzhen Sun
,
Ying Zhang
,
Junmei Ban
,
Jing-Shan Hong
, and
Chung-Yi Lin

Abstract

Radar and surface rainfall observations are two sources of operational data crucial for heavy rainfall prediction. Their individual values on improving convective forecasting through data assimilation have been examined in the past using convection-permitting numerical models. However, the benefit of their simultaneous assimilations has not yet been evaluated. The objective of this study is to demonstrate that, using a 4D-Var data assimilation system with a microphysical scheme, these two data sources can be assimilated simultaneously and the combined assimilation of radar data and estimated rainfall data from radar reflectivity and surface network can lead to improved short-term heavy rainfall prediction. In our study, a combined data assimilation experiment is compared with a rainfall-only and a radar-only (with or without reflectivity) experiments for a heavy rainfall event occurring in Taiwan during the passage of a mei-yu system. These experiments are conducted by applying the Weather Research and Forecasting (WRF) 4D-Var data assimilation system with a 20-min time window aiming to improve 6-h convective heavy rainfall prediction. Our results indicate that the rainfall data assimilation contributes significantly to the analyses of humidity and temperature whereas the radar data assimilation plays a crucial role in wind analysis, and further, combining the two data sources results in reasonable analyses of all three fields by eliminating large, unphysical analysis increments from the experiments of assimilating individual data only. The results also show that the combined assimilation improves forecasts of heavy rainfall location and intensity of 6-h accumulated rainfall for the case studied.

Free access