Search Results

You are looking at 1 - 9 of 9 items for :

  • Author or Editor: Jing Zhang x
  • Journal of Physical Oceanography x
  • Refine by Access: All Content x
Clear All Modify Search
Xiangyu Zhang
,
Zhao Jing
, and
Peiran Yang

Abstract

Oceanic mesoscale and submesoscale eddies produce a pronounced vertical buoyancy flux, playing an important role in ocean restratification. This study used a 1-km ocean simulation to investigate the seasonality of the vertical eddy buoyancy flux (VEBF) in the Kuroshio Extension as well as its underlying dynamics. The simulated VEBF in the upper 200 m over the Kuroshio Extension has a pronounced seasonal cycle. The winter VEBF peaks in the mixed layer, whereas the summer VEBF has a much smaller magnitude but a more complicated vertical structure with a narrow peak in the shallow mixed layer and a broader and stronger peak in the seasonal thermocline. The baroclinic instability (BCI), frontogenesis, and turbulent thermal wind (TTW) balance all contribute to the VEBF seasonal cycle. In winter, large surface heat loss and intense winds destroy stratification and enhance turbulent vertical mixing in the upper ocean. These phenomena intensify VEBF by promoting its components induced by the frontogenesis and TTW balance and by triggering mixed layer instability (MLI). In summer, strong stratification associated with suppressed turbulent vertical mixing weakens the contributions of the frontogenesis and TTW balance to VEBF and shifts the dominant BCI type from the MLI to the surface Charney- and Philips-like types with greatly reduced growth rate compared with that of MLI in winter. The shallow peak of the VEBF in summer is mainly attributed to the TTW balance, whereas the BCI and frontogenesis account primarily for its deep peak.

Open access
Jing Zhang
,
Xinyu Guo
,
Liang Zhao
,
Yasumasa Miyazawa
, and
Qun Sun

Abstract

Onshore and offshore currents and the associated volume transport across three isobaths (50, 100, and 200 m) over the continental shelf of the East China Sea were examined using daily reanalysis data in 1993–2012. After being averaged along the isobaths, the velocities across 100 and 50 m are onshore in the bottom layer but offshore in the surface layer. In contrast, those across the 200-m isobath are onshore in the surface and bottom layers but without a clear direction in the midlayer, suggesting a three-layer structure. The surface offshore current across the 100-m isobath mainly arises from the Taiwan Strait Current, while the surface onshore current across the 200-m isobath mainly arises from the Kuroshio, both of which converge in the area between the 100- and 200-m isobaths and flow toward the Tsushima Strait. The control of bottom Ekman dynamics on the onshore bottom currents is important at the 100-m isobath, partly important at the 200-m isobath, and slightly important at the 50-m isobath. The seasonal variations of onshore and offshore currents in the surface layers across the three isobaths are likely caused by local winds, the Taiwan Strait Current, and the Changjiang discharge, while those in midlayer across the 200-m isobath demonstrate a strong geostrophic control and can be interpreted from a traditional viewpoint on the Kuroshio intrusion over the entire water column across the shelf slope. The close connection of bottom onshore currents across the three isobaths suggests that the bottom layer is an important pathway for water exchange of shelf water and the open sea.

Full access
Hui Wu
,
Bing Deng
,
Rui Yuan
,
Jun Hu
,
Jinghua Gu
,
Fang Shen
,
Jianrong Zhu
, and
Jing Zhang

Abstract

Measuring the transport of the Changjiang (also known as the Yangtze) River–derived buoyant coastal current, that is, the Min–Zhe Coastal Current, is of great importance for understanding the fate of terrestrial materials from this large river into the open ocean, but it is usually difficult to achieve because of the energetic tidal currents along the Chinese coast. In February 2012, a detiding cruise survey was carried out using the phase-averaging method. For the first time, this coastal current has been quantified with in situ data and has been shown to have a volume transport of 0.215 Sv (1 Sv ≡ 106 m3 s−1) and a maximum surface velocity of ~50 cm s−1. The ratio between the volume transport of the buoyant coastal current and that of the Changjiang is O(10). Freshwater transport by the buoyant coastal current accounts for over 90% of the Changjiang River's discharge. Buoyancy and winds are both important in driving this current.

Full access
Xiangpeng Wang
,
Yan Du
,
Yuhong Zhang
,
Tianyu Wang
,
Minyang Wang
, and
Zhiyou Jing

Abstract

Subsurface eddies are a special type of oceanic eddy that display the maximum velocity in the subsurface layer. Based on field observations, a lens-shaped subsurface anticyclonic eddy (SAE) was detected in the northern South China Sea (SCS) in May 2021. The SAE was located between 20 and 200 m, with a shoaling of the seasonal thermocline and deepening of the main thermocline. Satellite images showed that the SAE exhibited positive sea level anomaly (SLA) and negative sea surface temperature (SST) anomaly. Eddy track indicated that this SAE originated from the Luzon Strait and was generated in the Kuroshio Loop Current (KLC) last winter. The evolution of the SAE was related to the anomalous water properties inside the eddy and the seasonal change of sea surface heat flux. In winter, the continuous surface cooling and Kuroshio intrusion led to a cold, salty core in the upper part of the anticyclonic eddy, which resulted in a subsurface-intensified structure through geostrophic adjustment. As the season changed from winter to spring, sea surface temperature increased. The lens-shaped structure was formed when the seasonal thermocline appeared near the surface that capped the winter well-mixed water inside the eddy. From 1993 to 2021, nearly half of the winter KLC shedding eddies (12/25) survived to late spring and evolved into subsurface lens-shaped structures. This result indicates that the transition of KLC shedding eddy to SAE is a common phenomenon in the northern SCS, which is potentially important for local air–sea interaction, heat–salt balance, and biogeochemical processes.

Significance Statement

Subsurface eddies are lens-shaped eddies with anomalous water properties in the subsurface layer. While such eddies have been reported in many regions of the World Ocean, they are poorly investigated in the SCS, especially the periodic subsurface eddies that appear in a fixed time frame with similar patterns and trajectories. This study reported a subsurface anticyclonic eddy (SAE) in the northern SCS and elucidated its generation and evolution processes. Statistical results confirm that this is a periodic SAE, which occurs nearly annually in late spring and evolves from the Kuroshio shedding eddy with seasonal changes. This study provides a new perspective on the evolution of subsurface eddies in the SCS and will benefit targeted observations in the future.

Free access
Ruichen Zhu
,
Haiyuan Yang
,
Zhaohui Chen
,
Zhiyou Jing
,
Zhiwei Zhang
,
Bingrong Sun
, and
Lixin Wu

Abstract

A variety of submesoscale coherent vortices (SCVs) in the Kuroshio Extension region have been reported by recent observational studies, and the preliminary understanding of their properties, spatial distribution, and possible origins has progressively improved. However, due to relatively sparse in situ observations, the generation mechanisms of these SCVs and associated dynamic processes remain unclear. In this study, we use high-resolution model simulations to fill the gaps of the in situ observations in terms of the three-dimensional structures and life cycles of SCVs. Vortex detection and tracking algorithms are adopted and the characteristics of warm-core and cold-core SCVs are revealed. These vortices have finite Rossby numbers (0.25–0.4), and their horizontal structures can be well described by the Taylor vortex model in terms of the gradient wind balance. The vertical velocity field is characterized by a distinct dipole pattern with upwelling and downwelling cells at the vortex edge. It is very likely that both types of SCVs are generated along the eastern Japan coast through flow–topography interactions, and the Izu–Ogasawara Ridge and Hokkaido slope are found to be two important generation sites where topography friction produces extremely low potential vorticity. After leaving the boundary, SCVs can propagate over long distances and trap a water volume of ∼1011 m3.

Open access
Haiyuan Yang
,
Lixin Wu
,
Ping Chang
,
Bo Qiu
,
Zhao Jing
,
Qiuying Zhang
, and
Zhaohui Chen

Abstract

Using eddy-resolving Community Earth System Model (CESM) simulations, this study investigates mesoscale energetics and air–sea interaction at two different time-scale windows in the Kuroshio Extension (KE) region. Based on an energy budget analysis, it is found that both baroclinic and barotropic pathways contribute to eddy energy generation within the low-frequency window (longer than 3 weeks) in this region, while both air–sea heat fluxes and wind stresses act as prominent eddy killers that remove energy from the ocean. In contrast, within the high-frequency window oceanic variability is mainly fed by baroclinic instability and regulated by turbulent thermal wind (TTW) processes, while the positive wind work is derived primarily from ageostrophic flow, i.e., Ekman drift, and along with air–sea heat fluxes has little influence on geostrophic mesoscale eddies.

Full access
Shengpeng Wang
,
Zhao Jing
,
Qiuying Zhang
,
Ping Chang
,
Zhaohui Chen
,
Hailong Liu
, and
Lixin Wu

Abstract

In this study, the global eddy kinetic energy (EKE) budget in horizontal wavenumber space is analyzed based on 1/10° ocean general circulation model simulations. In both the tropical and midlatitude regions, the barotropic energy conversion from background flow to eddies is positive throughout the wavenumber space and generally peaks at the scale (L e ) where EKE reaches its maximum. The baroclinic energy conversion is more pronounced at midlatitudes. It exhibits a dipolar structure with positive and negative values at scales smaller and larger than L e , respectively. Surface wind power on geostrophic flow results in a significant EKE loss around L e but deposits energy at larger scales. The interior viscous dissipation and bottom drag inferred from the pressure flux convergence act as EKE sink terms. The latter is most efficient at L e while the former is more dominant at smaller scales. There is an evident mismatch between EKE generation and dissipation in the spectral space especially at the midlatitudes. This is reconciled by a dominant forward energy cascade on the equator and a dominant inverse energy cascade at the midlatitudes.

Full access
Zhongbin Sun
,
Zhiwei Zhang
,
Cheng Li
,
Dongliang Yuan
,
Qingguo Yuan
,
Wenbo Lu
,
Yuelin Liu
,
Chun Zhou
,
Jing Wang
,
Ya Yang
,
Wei Zhao
, and
Jiwei Tian

Abstract

Full-depth ocean zonal currents in the tropical and extratropical northwestern Pacific (TNWP) are studied using current measurements from 17 deep-ocean moorings deployed along the 143°E meridian from the equator to 22°N during January 2016–February 2017. Mean transports of the North Equatorial Current and North Equatorial Countercurrent are estimated to be 42.7 ± 7.1 Sv (1 Sv ≡ 106 m3 s−1) and 10.5 ± 5.3 Sv, respectively, both of which exhibit prominent annual cycles with opposite phases in this year. The observations suggest much larger vertical extents of several of the major subsurface currents than previously reported, including the Lower Equatorial Intermediate Current, Northern Intermediate Countercurrent, North Equatorial Subsurface Current, and North Equatorial Undercurrent (NEUC) from south to north. The Northern Subsurface Countercurrent and NEUC are found to be less steady than the other currents. Seasonal variations of these currents are also revealed in the study. In the deep ocean, the currents below 2000 m are reported for the first time. The observations confirm the striation patterns of meridionally alternating zonal currents in the intermediate and deep layers. Further analyses suggest a superposition of at least the first four and two baroclinic modes to represent the mean equatorial and off-equatorial currents, respectively. Meanwhile, seasonal variations of the currents are generally dominated by the first baroclinic mode associated with the low-mode Rossby waves. Overall, the above observational results not only enhance the knowledge of full-depth current system in the TNWP but also provide a basis for future model validation and skill improvement.

Restricted access
Yilong Lyu
,
Yuanlong Li
,
Jianing Wang
,
Jing Duan
,
Xiaohui Tang
,
Chuanyu Liu
,
Linlin Zhang
,
Qiang Ma
, and
Fan Wang

Abstract

Mooring measurements at ~140°E in the western equatorial Pacific Ocean documented greatly intensified eastward subsurface currents, which largely represent the nascent Equatorial Undercurrent, to ~67 cm s−1 in boreal summer of 2016. The eastward currents occupied the entire upper 500 m while the westward surface currents nearly disappeared. Historical in situ data observed similar variations after most El Niño events. Further analysis combining satellite and reanalysis data reveals that the eastward currents observed at ~140°E are a component of an anomalous counterclockwise circulation straddling the equator, with westward current anomalies retroflecting near the western boundary and feeding southeastward current anomalies along the New Guinea coast. A 1.5-layer reduced-gravity ocean model is able to crudely reproduce these variations, and a hierarchy of sensitivity experiments is performed to understand the underlying dynamics. The anomalous circulation is largely the delayed ocean response to equatorial wind anomalies over the central-to-eastern Pacific basin emerging in the mature stage of El Niño. Downwelling Rossby waves are generated by the reflection of equatorial Kelvin waves and easterly winds in the eastern Pacific. Upon reaching the western Pacific, the southern lobes of Rossby waves encounter the slanted New Guinea island and deflect to the equator, establishing a local sea surface height maximum and leading to the detour of westward currents flowing from the Pacific interior. Additional experiments with edited western boundary geometry confirm the importance of topography in regulating the structure of this cross-equatorial anomalous circulation.

Free access