Search Results
You are looking at 1 - 4 of 4 items for :
- Author or Editor: Jinwon Kim x
- Journal of Applied Meteorology and Climatology x
- Refine by Access: All Content x
Abstract
The effects of precipitable water vapor (PWV) retrievals from the Southern California Integrated GPS Network (SCIGN) on quantitative precipitation forecast (QPF) skill are examined over two flood-prone regions of Southern California: Santa Barbara (SB) and Ventura County (VC). Two sets of QPFs are made, one using the initial water vapor field from the NCEP 40-km Eta initial analysis, and another in which the initial Eta water vapor field is modified by incorporating the PWV data from the SCIGN receivers. Lateral boundary data for the QPFs, as well as the hydrostatic component of the GPS zenith delay data, are estimated from the Eta analysis. Case studies of a winter storm on 2 February during the 1997/98 El Niño, and storms leading up to the La Conchita, California, landslide on 10 January 2005, show notably improved QPFs for the first 3–6 h with the addition of GPS PWV data. For a total of 47 winter storm forecasts between February 1998 and January 2005 the average absolute QPF improvement is small; however, QPF improvements exceed 5 mm in several underpredicted rainfall events, with GPS data also improving most cases with overpredicted rainfall. The GPS improvements are most significant (above or near the 2σ level) when the low-level winds off the coast of Southern California are from the southern (SW to SE) quadrant. To extend the useful forecast skill enhancement beyond six hours, however, additional sources of water vapor data over broader areas of the adjacent Pacific Ocean are needed.
Abstract
The effects of precipitable water vapor (PWV) retrievals from the Southern California Integrated GPS Network (SCIGN) on quantitative precipitation forecast (QPF) skill are examined over two flood-prone regions of Southern California: Santa Barbara (SB) and Ventura County (VC). Two sets of QPFs are made, one using the initial water vapor field from the NCEP 40-km Eta initial analysis, and another in which the initial Eta water vapor field is modified by incorporating the PWV data from the SCIGN receivers. Lateral boundary data for the QPFs, as well as the hydrostatic component of the GPS zenith delay data, are estimated from the Eta analysis. Case studies of a winter storm on 2 February during the 1997/98 El Niño, and storms leading up to the La Conchita, California, landslide on 10 January 2005, show notably improved QPFs for the first 3–6 h with the addition of GPS PWV data. For a total of 47 winter storm forecasts between February 1998 and January 2005 the average absolute QPF improvement is small; however, QPF improvements exceed 5 mm in several underpredicted rainfall events, with GPS data also improving most cases with overpredicted rainfall. The GPS improvements are most significant (above or near the 2σ level) when the low-level winds off the coast of Southern California are from the southern (SW to SE) quadrant. To extend the useful forecast skill enhancement beyond six hours, however, additional sources of water vapor data over broader areas of the adjacent Pacific Ocean are needed.
Abstract
A geostatistical framework for integrating lower-atmosphere state variables and terrain characteristics into the spatial interpolation of rainfall is presented. Lower-atmosphere state variables considered are specific humidity and wind, derived from an assimilated data product from the National Centers for Environmental Prediction and the National Center for Atmospheric Research (NCEP–NCAR reanalysis). These variables, along with terrain elevation and its gradient from a 1-km-resolution digital elevation model, are used for constructing additional rainfall predictors, such as the amount of moisture subject to orographic lifting; these latter predictors quantify the interaction of lower-atmosphere characteristics with local terrain. A “first-guess” field of precipitation estimates is constructed via a multiple regression model using collocated rain gauge observations and rainfall predictors. The final map of rainfall estimates is derived by adding to this initial field a field of spatially interpolated residuals, which accounts for local deviations from the regression-based first-guess field. Several forms of spatial interpolation (kriging), which differ in the degree of complexity of the first-guess field, are considered for mapping the seasonal average of daily precipitation for the period from 1 November 1981 to 31 January 1982 over a region in northern California at 1-km resolution. The different interpolation schemes are compared in terms of cross-validation statistics and the spatial characteristics of cross-validation errors. The results indicate that integration of low-atmosphere and terrain information in a geostatistical framework could lead to more accurate representations of the spatial distribution of rainfall than those found in traditional analyses based only on rain gauge data. The magnitude of this latter improvement, however, would depend on the density of the rain gauge stations, on the spatial variability of the precipitation field, and on the degree of correlation between rainfall and its predictors.
Abstract
A geostatistical framework for integrating lower-atmosphere state variables and terrain characteristics into the spatial interpolation of rainfall is presented. Lower-atmosphere state variables considered are specific humidity and wind, derived from an assimilated data product from the National Centers for Environmental Prediction and the National Center for Atmospheric Research (NCEP–NCAR reanalysis). These variables, along with terrain elevation and its gradient from a 1-km-resolution digital elevation model, are used for constructing additional rainfall predictors, such as the amount of moisture subject to orographic lifting; these latter predictors quantify the interaction of lower-atmosphere characteristics with local terrain. A “first-guess” field of precipitation estimates is constructed via a multiple regression model using collocated rain gauge observations and rainfall predictors. The final map of rainfall estimates is derived by adding to this initial field a field of spatially interpolated residuals, which accounts for local deviations from the regression-based first-guess field. Several forms of spatial interpolation (kriging), which differ in the degree of complexity of the first-guess field, are considered for mapping the seasonal average of daily precipitation for the period from 1 November 1981 to 31 January 1982 over a region in northern California at 1-km resolution. The different interpolation schemes are compared in terms of cross-validation statistics and the spatial characteristics of cross-validation errors. The results indicate that integration of low-atmosphere and terrain information in a geostatistical framework could lead to more accurate representations of the spatial distribution of rainfall than those found in traditional analyses based only on rain gauge data. The magnitude of this latter improvement, however, would depend on the density of the rain gauge stations, on the spatial variability of the precipitation field, and on the degree of correlation between rainfall and its predictors.
Abstract
The authors investigate the short-term relationship between aerosol concentrations and summer rainfall frequency in China using the daily surface observations of particulate matters with a diameter of less than 10 μm (PM10) mass concentration, rainfall, and satellite-observed cloud properties. Results in this study reveal that on the time scale of a few days aerosol concentration is positively correlated with the frequency of moderate-rainfall (10–20 mm day−1) days but is negatively correlated with the frequency of light-rainfall (<5 mm day−1) days. Satellite observations of cloud properties show that higher aerosol concentrations are positively correlated with the increase in mixed cloud amount, cloud effective radius, cloud optical depth, and cloud-top heights; this corresponds to the decrease in low-level liquid clouds and the increase in midlevel ice–mixed clouds. Based on this analysis, the authors hypothesize that the increase in aerosol concentration results in the increase in summer rainfall frequency in China via enhanced ice nucleation in the midtroposphere. However, over the past few decades, observations show an increasing long-term trend in aerosol concentration but decreasing trends in summer rainfall frequency and relative humidity (RH) in China. Despite the short-term positive relationship between summer rainfall frequency and aerosol concentration found in this study, the long-term variations in summer rainfall frequency in China are mainly determined by other factors including RH variation possibly caused by global and regional climate changes. A continuous decrease in RH resulting in less summer rainfall frequency may further enhance aerosol concentrations in the future in conjunction with the increase in the anthropogenic emissions.
Abstract
The authors investigate the short-term relationship between aerosol concentrations and summer rainfall frequency in China using the daily surface observations of particulate matters with a diameter of less than 10 μm (PM10) mass concentration, rainfall, and satellite-observed cloud properties. Results in this study reveal that on the time scale of a few days aerosol concentration is positively correlated with the frequency of moderate-rainfall (10–20 mm day−1) days but is negatively correlated with the frequency of light-rainfall (<5 mm day−1) days. Satellite observations of cloud properties show that higher aerosol concentrations are positively correlated with the increase in mixed cloud amount, cloud effective radius, cloud optical depth, and cloud-top heights; this corresponds to the decrease in low-level liquid clouds and the increase in midlevel ice–mixed clouds. Based on this analysis, the authors hypothesize that the increase in aerosol concentration results in the increase in summer rainfall frequency in China via enhanced ice nucleation in the midtroposphere. However, over the past few decades, observations show an increasing long-term trend in aerosol concentration but decreasing trends in summer rainfall frequency and relative humidity (RH) in China. Despite the short-term positive relationship between summer rainfall frequency and aerosol concentration found in this study, the long-term variations in summer rainfall frequency in China are mainly determined by other factors including RH variation possibly caused by global and regional climate changes. A continuous decrease in RH resulting in less summer rainfall frequency may further enhance aerosol concentrations in the future in conjunction with the increase in the anthropogenic emissions.
Abstract
Cold-season air quality in Seoul, South Korea, has been improved noticeably between 2001 and 2015 with a near-50% decrease in the mean concentration of particulate matter with aerodynamic diameters ≤10 μm (PM10). Like the change in mean concentration, the occurrence frequency and intensity of the extreme-high-PM10 episodes exceeding 100 μg m−3 has significantly decreased as well. In addition to the multilateral efforts of the South Korean government to reduce air pollutant emissions, this study proposes that large-scale circulation changes also could have contributed to the air quality improvements. Specifically, the recent weakening of the Aleutian low may have intensified the tropospheric westerlies around the Korean Peninsula, resulting in a shorter residence time of particulate matter over South Korea. Thus, despite constant governmental effort to reduce pollutant emissions, the improvement in air quality over South Korea may be delayed if the Aleutian low recovers its past strength in the future. This study emphasizes the importance of the meteorological field in determining the air quality over South Korea.
Abstract
Cold-season air quality in Seoul, South Korea, has been improved noticeably between 2001 and 2015 with a near-50% decrease in the mean concentration of particulate matter with aerodynamic diameters ≤10 μm (PM10). Like the change in mean concentration, the occurrence frequency and intensity of the extreme-high-PM10 episodes exceeding 100 μg m−3 has significantly decreased as well. In addition to the multilateral efforts of the South Korean government to reduce air pollutant emissions, this study proposes that large-scale circulation changes also could have contributed to the air quality improvements. Specifically, the recent weakening of the Aleutian low may have intensified the tropospheric westerlies around the Korean Peninsula, resulting in a shorter residence time of particulate matter over South Korea. Thus, despite constant governmental effort to reduce pollutant emissions, the improvement in air quality over South Korea may be delayed if the Aleutian low recovers its past strength in the future. This study emphasizes the importance of the meteorological field in determining the air quality over South Korea.