Search Results
You are looking at 1 - 3 of 3 items for :
- Author or Editor: Joël Arnault x
- Journal of Climate x
- Refine by Access: All Content x
Abstract
It is well accepted that global circulation models equipped with stable water isotopologues help us better understand the relationships between atmospheric circulation changes and isotope records in paleoclimate archives. Still, isotope-enabled models do not disentangle the different processes affecting precipitation isotopic compositions. Furthermore, the relevance of this model-oriented approach relies on the realism of the modeled isotope results, which would support the interpretation of the proxy records in terms of modeled climate changes. To alleviate these limitations, the newly developed WRF-Hydro-iso-tag, a version of the isotope-enabled regional coupled model WRF-Hydro-iso enhanced with an isotope-tracing procedure, is presented. Physics-based WRF-Hydro-iso-tag ensembles are used to regionally downscale the isotope-enabled Community Earth System Model for southern Africa, for two 10-yr slices of mid-Holocene and preindustrial times. The isotope-tracing procedure is tailored to assess the origin of the hydrogen isotope deuterium contained in southern African precipitation, between the Atlantic and Indian Oceans. In comparison to the global model, WRF-Hydro-iso-tag simulates lower precipitation amounts with more regional details, as well as mid-Holocene-to-preindustrial changes in precipitation isotopic compositions that better match plant-wax deuterium records from two marine sediment cores off the Orange and Limpopo River basins. Linear relationships between mid-Holocene-to-preindustrial changes in temperature, precipitation amount, moisture source, and precipitation deuterium compositions are derived from the ensemble results. A deuterium enrichment in the Orange River-related sediment core may not be related to an aridification but rather indicate a summer circulation change enabling a larger contribution of more isotopically enriched moisture from the Atlantic Ocean.
Significance Statement
The knowledge of past climates is crucial for understanding our Earth system and apprehending future climate change. Plant materials in sediment archives contain atoms of hydrogen from past precipitation that allow paleoclimate reconstructions, using compositions of the hydrogen isotope deuterium. However, in the tropics, deuterium-depleted plant remains can either denote a wetter climate phase or a change in atmospheric circulation patterns with longer distances between ocean evaporation and land precipitation. This work provides an innovative dynamical downscaling method of global paleoclimate models to disentangle the effects of precipitation amount change and moisture source change on deuterium records, and ultimately to improve paleoclimate reconstructions. The interpretation of a deuterium enrichment in a marine sediment core as a marker for aridification is revised. The enrichment caused by an atmospheric circulation change bringing a larger amount of more isotopically enriched moisture flow from the Atlantic Ocean to southern African precipitation would be a more physically sound explanation.
Abstract
It is well accepted that global circulation models equipped with stable water isotopologues help us better understand the relationships between atmospheric circulation changes and isotope records in paleoclimate archives. Still, isotope-enabled models do not disentangle the different processes affecting precipitation isotopic compositions. Furthermore, the relevance of this model-oriented approach relies on the realism of the modeled isotope results, which would support the interpretation of the proxy records in terms of modeled climate changes. To alleviate these limitations, the newly developed WRF-Hydro-iso-tag, a version of the isotope-enabled regional coupled model WRF-Hydro-iso enhanced with an isotope-tracing procedure, is presented. Physics-based WRF-Hydro-iso-tag ensembles are used to regionally downscale the isotope-enabled Community Earth System Model for southern Africa, for two 10-yr slices of mid-Holocene and preindustrial times. The isotope-tracing procedure is tailored to assess the origin of the hydrogen isotope deuterium contained in southern African precipitation, between the Atlantic and Indian Oceans. In comparison to the global model, WRF-Hydro-iso-tag simulates lower precipitation amounts with more regional details, as well as mid-Holocene-to-preindustrial changes in precipitation isotopic compositions that better match plant-wax deuterium records from two marine sediment cores off the Orange and Limpopo River basins. Linear relationships between mid-Holocene-to-preindustrial changes in temperature, precipitation amount, moisture source, and precipitation deuterium compositions are derived from the ensemble results. A deuterium enrichment in the Orange River-related sediment core may not be related to an aridification but rather indicate a summer circulation change enabling a larger contribution of more isotopically enriched moisture from the Atlantic Ocean.
Significance Statement
The knowledge of past climates is crucial for understanding our Earth system and apprehending future climate change. Plant materials in sediment archives contain atoms of hydrogen from past precipitation that allow paleoclimate reconstructions, using compositions of the hydrogen isotope deuterium. However, in the tropics, deuterium-depleted plant remains can either denote a wetter climate phase or a change in atmospheric circulation patterns with longer distances between ocean evaporation and land precipitation. This work provides an innovative dynamical downscaling method of global paleoclimate models to disentangle the effects of precipitation amount change and moisture source change on deuterium records, and ultimately to improve paleoclimate reconstructions. The interpretation of a deuterium enrichment in a marine sediment core as a marker for aridification is revised. The enrichment caused by an atmospheric circulation change bringing a larger amount of more isotopically enriched moisture flow from the Atlantic Ocean to southern African precipitation would be a more physically sound explanation.
Abstract
Precipitation change is critical for the Three-River Headwaters (TRH) region, which serves downstream communities in East Asia. The spring (March–May) precipitation over the TRH region shows an increasing trend from 1979 to 2018, as revealed by a Chinese gridded precipitation product (CN05.1). However, the physical processes responsible for this precipitation change are still unclear. This study investigated the characteristics of spring precipitation and the water budget over the TRH region using the ERA5 global reanalysis and the Weather Research and Forecast (WRF) Model. The WRF version employed in this study includes online calculations of the atmospheric water budget and an evapotranspiration (ET) tagging procedure to trace evapotranspired water in the atmosphere. Both ERA5 and WRF reproduce the spring precipitation increase. Moreover, WRFD02 (with a 3-km domain) reduces the wet bias by around 60% and 77% compared to WRFD01 (9 km) and ERA5 (30 km). Both ERA5 and WRF demonstrate that the increase of spring precipitation is dominated by moisture convergence, especially the atmospheric water fluxes from the southern boundary. The enhanced moisture inflow is sustained by enhanced mass flux while the enhanced moisture outflow is sustained by increased moisture. The ET-tagging results further demonstrate the weakened precipitation recycling process because of the significant increase of precipitation produced by external moisture. Compared to ERA5, the reduced wet bias with WRF is attributed to a better spatial resolution of orographic barrier effects, which reduce the southerly water fluxes. The results highlight the potential of regional climate downscaling to better represent the atmospheric water budget in complex terrain.
Abstract
Precipitation change is critical for the Three-River Headwaters (TRH) region, which serves downstream communities in East Asia. The spring (March–May) precipitation over the TRH region shows an increasing trend from 1979 to 2018, as revealed by a Chinese gridded precipitation product (CN05.1). However, the physical processes responsible for this precipitation change are still unclear. This study investigated the characteristics of spring precipitation and the water budget over the TRH region using the ERA5 global reanalysis and the Weather Research and Forecast (WRF) Model. The WRF version employed in this study includes online calculations of the atmospheric water budget and an evapotranspiration (ET) tagging procedure to trace evapotranspired water in the atmosphere. Both ERA5 and WRF reproduce the spring precipitation increase. Moreover, WRFD02 (with a 3-km domain) reduces the wet bias by around 60% and 77% compared to WRFD01 (9 km) and ERA5 (30 km). Both ERA5 and WRF demonstrate that the increase of spring precipitation is dominated by moisture convergence, especially the atmospheric water fluxes from the southern boundary. The enhanced moisture inflow is sustained by enhanced mass flux while the enhanced moisture outflow is sustained by increased moisture. The ET-tagging results further demonstrate the weakened precipitation recycling process because of the significant increase of precipitation produced by external moisture. Compared to ERA5, the reduced wet bias with WRF is attributed to a better spatial resolution of orographic barrier effects, which reduce the southerly water fluxes. The results highlight the potential of regional climate downscaling to better represent the atmospheric water budget in complex terrain.
Abstract
Precipitation in the Three-River Headwater (TRH) region has undergone significant changes as a result of global warming, which can affect water resources in downstream regions of Asia. However, the underlying mechanisms of the precipitation variability during the cold season (October–April) are still not fully understood. In this study, the daily China gridded precipitation product CN05.1 as well as the NCEP–NCAR reanalysis are used to investigate the characteristics of the cold season precipitation variability over the TRH region and associated atmospheric mechanisms. The cold season precipitation shows an increasing trend (5.5 mm decade−1) from 1961 to 2014, with a dry-to-wet shift in around the late 1980s. The results indicate that the increased precipitation is associated with the enhanced easterly anomalies over the Tibetan Plateau (TP) and enhanced southeasterly water vapor transport. The enhanced Walker circulations, caused by the gradients of sea surface temperature between the equatorial central-eastern Pacific and Indo–western Pacific in tropical oceans, resulted in strengthened easterly anomalies over the TP and the westward expansion of the anticyclone in the western North Pacific. Meanwhile, the changed Walker circulation is accompanied by a strengthened local Hadley circulation, which leads to enhanced meridional water vapor transport from tropical oceans and the South China Sea toward the TRH region. Furthermore, the strengthened East Asia subtropical westerly jet may contribute to the enhanced divergence at upper levels and anomalous ascending motion above the TRH region, leading to more precipitation.
Abstract
Precipitation in the Three-River Headwater (TRH) region has undergone significant changes as a result of global warming, which can affect water resources in downstream regions of Asia. However, the underlying mechanisms of the precipitation variability during the cold season (October–April) are still not fully understood. In this study, the daily China gridded precipitation product CN05.1 as well as the NCEP–NCAR reanalysis are used to investigate the characteristics of the cold season precipitation variability over the TRH region and associated atmospheric mechanisms. The cold season precipitation shows an increasing trend (5.5 mm decade−1) from 1961 to 2014, with a dry-to-wet shift in around the late 1980s. The results indicate that the increased precipitation is associated with the enhanced easterly anomalies over the Tibetan Plateau (TP) and enhanced southeasterly water vapor transport. The enhanced Walker circulations, caused by the gradients of sea surface temperature between the equatorial central-eastern Pacific and Indo–western Pacific in tropical oceans, resulted in strengthened easterly anomalies over the TP and the westward expansion of the anticyclone in the western North Pacific. Meanwhile, the changed Walker circulation is accompanied by a strengthened local Hadley circulation, which leads to enhanced meridional water vapor transport from tropical oceans and the South China Sea toward the TRH region. Furthermore, the strengthened East Asia subtropical westerly jet may contribute to the enhanced divergence at upper levels and anomalous ascending motion above the TRH region, leading to more precipitation.