Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: Johannes M. L. Dahl x
  • Journal of the Atmospheric Sciences x
  • Refine by Access: All Content x
Clear All Modify Search
Jannick Fischer
and
Johannes M. L. Dahl

Abstract

In the recent literature, the conception has emerged that supercell tornado potential may mostly depend on the strength of the low-level updraft, with more than sufficient subtornadic vertical vorticity being assumed to be present in the outflow. In this study, we use highly idealized simulations with heat sinks and sources to conduct controlled experiments, changing the cold pool or low-level updraft character independently. Multiple, time-dependent heat sinks are employed to produce a realistic near-ground cold pool structure. It is shown that both the cold pool and updraft strength actively contribute to the tornado potential. Furthermore, there is a sharp transition between tornadic and nontornadic cases, indicating a bifurcation between these two regimes triggered by small changes in the heat source or sink magnitude. Moreover, larger updraft strength, updraft width, and cold pool deficit do not necessarily result in a stronger maximum near-ground vertical vorticity. However, a stronger updraft or cold pool can both drastically reduce the time it takes for the first vortex to form.

Free access
Jannick Fischer
and
Johannes M. L. Dahl

Abstract

Although much is known about the environmental conditions necessary for supercell tornadogenesis, the near-ground vorticity dynamics during the tornadogenesis process itself are still somewhat poorly understood. For instance, seemingly contradicting mechanisms responsible for large near-ground vertical vorticity can be found in the literature. Broadly, these mechanisms can be sorted into two classes, one being based on upward tilting of mainly baroclinically produced horizontal vorticity in descending air (here called the downdraft mechanism), while in the other the horizontal vorticity vector is abruptly tilted upward practically at the surface by a strong updraft gradient (referred to as the in-and-up mechanism). In this study, full-physics supercell simulations and highly idealized simulations show that both mechanisms play important roles during tornadogenesis. Pretornadic vertical vorticity maxima are generated via the downdraft mechanism, while the dynamics of a fully developed vortex are dominated by the in-and-up mechanism. Consequently, a transition between the two mechanisms occurs during tornadogenesis. This transition is a result of axisymmetrization of the pretornadic vortex patch and intensification via vertical stretching. These processes facilitate the development of the corner flow, which enables production of vertical vorticity by upward tilting of horizontal vorticity practically at the surface, i.e., the in-and-up mechanism. The transition of mechanisms found here suggests that early stages of tornado formation rely on the downdraft mechanism, which is often limited to a small vertical component of baroclinically generated vorticity. Subsequently, a larger supply of horizontal vorticity (produced baroclinically or via surface drag, or even imported from the environment) may be utilized, which marks a considerable change in the vortex dynamics.

Full access
Johannes M. L. Dahl
and
Jannick Fischer

Abstract

The authors explore the dynamical origins of rotation of a mature tornado-like vortex (TLV) using an idealized numerical simulation of a supercell thunderstorm. Using 30-min forward parcel trajectories that terminate at the base of the TLV, the vorticity dynamics are analyzed for n = 7 parcels. Aside from the integration of the individual terms of the traditional vorticity equation, an alternative formulation of the vorticity equation and its integral, here referred to as vorticity source decomposition, is employed. This formulation is derived on the basis of Truesdell’s “basic vorticity formula,” which is obtained by first formulating the vorticity in material (Lagrangian) coordinates, and then obtaining the components relative to the fixed spatial (Eulerian) basis by applying the vector transformation rule. The analysis highlights surface drag as the most reliable vorticity source for the rotation at the base of the vortex for the analyzed parcels. Moreover, the vorticity source decomposition exposes the importance of small amounts of vorticity produced baroclinically, which may become significant after sufficient stretching occurs. Further, it is shown that ambient vorticity, upon being rearranged as the trajectories pass through the storm, may for some parcels directly contribute to the rotation of the TLV. Finally, the role of diffusion is addressed using analytical solutions of the steady Burgers–Rott vortex, suggesting that diffusion cannot aid in maintaining the vortex core.

Restricted access
Johannes M. L. Dahl

Abstract

The question of how rotation arises in sheared updrafts is analyzed using the shear and curvature vorticity framework. Local rotation exists where the shear and curvature vorticity have a similar magnitude and the same sign, such that parcels are in near-solid-body rotation. It is shown that the tilting terms of the vertical vorticity equation cannot explain the development of local rotation in the canonical cases where the horizontal vorticity is either purely streamwise or purely crosswise. Rather, vertical shear vorticity develops if crosswise vorticity is tilted, and vertical curvature vorticity develops if streamwise vorticity is tilted. To analyze how local rotation develops, two simulations of updrafts in an environment with crosswise and mostly streamwise vorticity, respectively, are discussed. A trajectory analysis is performed and shear and curvature vorticity budgets are analyzed. It is found that much of the horizontal vorticity near the updraft becomes streamwise, which results from pressure gradient accelerations in the vicinity of the updraft. Consequently, in the analyzed scenarios, the tilting mechanism results primarily in vertical curvature vorticity. Local rotation is achieved via an interchange process that facilitates a partial conversion of vertical curvature vorticity to vertical shear vorticity. Updraft rotation in supercells thus does not result from tilting of horizontal vorticity alone, but partial conversion of curvature to shear vorticity is also required.

Full access
Johannes M. L. Dahl
,
Matthew D. Parker
, and
Louis J. Wicker

Abstract

The authors use a high-resolution supercell simulation to investigate the source of near-ground vertical vorticity by decomposing the vorticity vector into barotropic and nonbarotropic parts. This way, the roles of ambient and storm-generated vorticity can be isolated. A new Lagrangian technique is employed in which material fluid volume elements are tracked to analyze the rearrangement of ambient vortex-line segments. This contribution is interpreted as barotropic vorticity. The storm-generated vorticity is treated as the residual between the known total vorticity and the barotropic vorticity.

In the simulation the development of near-ground vertical vorticity is an outflow phenomenon. There are distinct “rivers” of cyclonic shear vorticity originating from the base of downdrafts that feed into the developing near-ground vortex. The origin of these rivers of vertical vorticity is primarily horizontal baroclinic production, which is maximized in the lowest few hundred meters AGL. Subsequently, this horizontal vorticity is tilted upward while the parcels are still descending. The barotropic vorticity remains mostly streamwise along the analyzed trajectories and does not acquire a large vertical component as the parcels reach the ground. Thus, the ambient vorticity that is imported into the storm contributes only a small fraction of the total near-ground vertical vorticity.

Full access