Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: John A. Augustine x
  • Monthly Weather Review x
  • Refine by Access: All Content x
Clear All Modify Search
John A. Augustine

Abstract

Average diurnal variation of satellite-inferred rainfall for August 1979 was examined for five 15° longitudinal slices of the tropical Pacific Ocean. Over each area, averages were computed for each hour of the day over 30 days and examined in time series. The results illustrate the character of maritime convective rain over very large tropical areas and do not reflect the behavior of individual cumuli.

Time series over four of the five areas exhibited dual maxim one near dawn and the other in midafternoon. The remaining area's time series showed the test amount of rainfall in the morning. Harmonic analysis showed that the first harmonic (24-hour period), which peaked in the early afternoon over four of the arm accounted for most of the variance in the data over all areas. The second harmonic (12-hour period) significantly contributed to the variance, peaking near dawn and dusk over all areas, but, in most cases was of secondary importance. Higher frequency harmonics were unimportant. With the exception of the first harmonic of one area, the phase angles for the first two harmonies were coherent, suggesting that the same physical process (or processes) was at work.

Full access
Bradley F. Smull and John A. Augustine

Abstract

A multiscale analysis reveals diverse atmospheric structure and processes within a mesoscale convective complex (MCC) observed during the Oklahoma-Kansas Preliminary Regional Experiment for STORM-Central (PRE-STORM) experiment. This midlatitude system was the second in a series of four MCCs that developed and traveled along a quasi-stationary frontal zone over the central United States on 3–4 June 1985. Objectively analyzed mesoscale upper-air soundings encompassing the MCC are interpreted in tandem with more detailed dual-Doppler radar measurements that disclose the storm's internal airflow and precipitation structure. The mature MCC is found to include a variety of local environments and associated weather, ranging from tornadic thunderstorms to more linear convective bands and widespread chilling rains. A corresponding spectrum of mesoscale ver6cW-motion profiles is documented. These findings are related to previous composite-based portrayals of MCCs, as well as detailed case studies of simpler squall-type convective systems.

A hallmark of this storm was its “open-wave” precipitation pattern, in which two convective bands intersected so as to resemble a miniature developing frontal cyclone. This resemblance proves superficial, however, since 1) anticyclonic lower-tropospheric flow was observed in place of the expected cyclonic circulation near the convective apex, and 2) the accompanying wavelike lower-tropospheric temperature pattern was strongly influenced by moist processes intrinsic to the MCC (e.g., evaporative cooling), as opposed to horizontal advection about a developing vortex. The storm's intriguing organization is instead postulated to have resulted from the superposition of two preferred convective modes: one aligned with the mean vertical wind-shear vector, accompanied by marked cross-band thermal contrast and deformation through a deep layer, and another oriented perpendicular to the low-level shear, which exhibited a shallow gust front and mesoscale cold pool as found in squall-line systems. Highly three-dimensional airflow within the mature MCC and a pronounced modulation of convective instability across an embedded frontal-like zone further promoted the storm's asymmetric precipitation pattern.

Full access
John A. Augustine and Kenneth W. Howard

Abstract

Digital GOES infrared imagery is used to document mesoscale convective complexes (MCCs) over the United States during 1985. The introduction of digital imagery to this process, which has been carried out since 1978, has made possible a partial automation of the MCC documentation procedure and subsequently expanded opportunities for research. In conjunction with these improvements, the definition of an MCC has been slightly modified from that proposed by Maddox in 1980. The warmer threshold area measurement (⩽−32°C) of Maddox's original criteria has been dropped from consideration because its measurement was too subjective, and also was determined to be unnecessary. In 1985, 59 MCCs were identified; this total is approximately 20 to 40 more than in any year since 1978, when these annual summaries began. The monthly distribution and seasonal progression of MCCs in 1985 are similar to those of prior years. The enhanced MCC activity in June 1985 is associated with a persistent favorable quasi-geostrophic forcing during that period. Significant MCC research conducted in 1985 included a prototype large-scale field program (0.-K. PRE-STORM) in May and June dedicated solely to the investigation of middle-latitude mesoscale convective systems.

Full access
John A. Augustine and Kenneth W. Howard

Abstract

Infrared imagery from GOES was used to document mesoscale convective complexes (MCCs) over the United States during 1986 and 1987. A near-record 58 MCCs occurred in 1986, and 44 occurred in 1987. Although these totals were above average relative to MCC numbers of the 7 years prior to 1985, seasonal distributions for both years were atypical. Particularly, each had an extended period (∼3 weeks) when no MCCs occurred in late spring and early summer, a time when the mean MCC seasonal distribution peaks. This peculiarity was investigated by comparing mean large-scale surface and upper-air environments of null- and active-MCC periods of both years. Results confirmed the primary importance to MCC development of strong low-level thermal forcing, as well as proper vertical phasing of favorable lower- and midtropospheric environments.

A cursory survey of MCCs documented outside of the United States reveals that MCCs, or MCC-type storms, are a warm-season phenomenon of midlatitude, subtropical, and low-latitude regions around the globe. They have been documented in South America, Mexico, Europe, West Africa, and China. These storm systems are similar to United States MCCs in that they are nocturnal, persist for over 10 h, tend to develop within weak synoptic-scale dynamics in response to strong low-level thermal forcing and conditional instability, and occur typically downwind (midlevel) of elevated terrain. It is surmised that MCCs probably occur over other parts of the midlatitudes, subtropics, and low latitudes that have yet to be surveyed.

Full access