Search Results
You are looking at 1 - 8 of 8 items for :
- Author or Editor: John A. Knaff x
- Bulletin of the American Meteorological Society x
- Refine by Access: All Content x
The very strong 1997–98 El Niño was the first major event in which numerous forecasting groups participated in its real-time prediction. A previously developed simple statistical tool—the El Niño–Southern Oscillation Climatology and Persistence (ENSO–CLIPER) model—is utilized as a baseline for determination of skill in forecasting this event. Twelve statistical and dynamical models were available in real time for evaluation. Some of the models were able to outperform ENSO–CLIPER in predicting either the onset or the decay of the 1997–98 El Niño, but none were successful at both for a medium-range two season (6–8 months) lead time. There were no models, including ENSO–CLIPER, able to anticipate even one-half of the actual amplitude of the El Niño's peak at medium-range (6–11 months) lead. In addition, none of the models showed skill (i.e., lower root-mean-square error than ENSO–CLIPER) at the zero season (0–2 months) through the two season (6–8 months) lead times. No dynamical model and only two of the statistical models [the canonical correlation analysis (CCA) and the constructed analog (ANALOG)] outperformed ENSO–CLIPER by more than 5% of the root-mean-square error at the three season (9–11 months) and four season (12–14 months) lead time. El Niño impacts were correctly anticipated by national meteorological centers one half-year in advance, because of the tendency for El Niño events to persist into and peak during the boreal winter. Despite this, the zero to two season (0–8 month) forecasts of the El Niño event itself were no better than ENSO–CLIPER and were, in that sense, not skillful—a conclusion that remains unclear to the general meteorological and oceanographic communities.
The very strong 1997–98 El Niño was the first major event in which numerous forecasting groups participated in its real-time prediction. A previously developed simple statistical tool—the El Niño–Southern Oscillation Climatology and Persistence (ENSO–CLIPER) model—is utilized as a baseline for determination of skill in forecasting this event. Twelve statistical and dynamical models were available in real time for evaluation. Some of the models were able to outperform ENSO–CLIPER in predicting either the onset or the decay of the 1997–98 El Niño, but none were successful at both for a medium-range two season (6–8 months) lead time. There were no models, including ENSO–CLIPER, able to anticipate even one-half of the actual amplitude of the El Niño's peak at medium-range (6–11 months) lead. In addition, none of the models showed skill (i.e., lower root-mean-square error than ENSO–CLIPER) at the zero season (0–2 months) through the two season (6–8 months) lead times. No dynamical model and only two of the statistical models [the canonical correlation analysis (CCA) and the constructed analog (ANALOG)] outperformed ENSO–CLIPER by more than 5% of the root-mean-square error at the three season (9–11 months) and four season (12–14 months) lead time. El Niño impacts were correctly anticipated by national meteorological centers one half-year in advance, because of the tendency for El Niño events to persist into and peak during the boreal winter. Despite this, the zero to two season (0–8 month) forecasts of the El Niño event itself were no better than ENSO–CLIPER and were, in that sense, not skillful—a conclusion that remains unclear to the general meteorological and oceanographic communities.
The mean absolute error of the official tropical cyclone (TC) intensity forecasts from the National Hurricane Center (NHC) and the Joint Typhoon Warning Center (JTWC) shows limited evidence of improvement over the past two decades. This result has sometimes erroneously been used to conclude that little or no progress has been made in the TC intensity guidance models. This article documents statistically significant improvements in operational TC intensity guidance over the past 24 years (1989–2012) in four tropical cyclone basins (Atlantic, eastern North Pacific, western North Pacific, and Southern Hemisphere). Errors from the best available model have decreased at 1%–2% yr−1 at 24–72 h, with faster improvement rates at 96 and 120 h. Although these rates are only about one-third to one-half of the rates of reduction of the track forecast models, most are statistically significant at the 95% level. These error reductions resulted from improvements in statistical–dynamical intensity models and consensus techniques that combine information from statistical–dynamical and dynamical models. The reason that the official NHC and JTWC intensity forecast errors have decreased slower than the guidance errors is because in the first half of the analyzed period, their subjective forecasts were more accurate than any of the available guidance. It is only in the last decade that the objective intensity guidance has become accurate enough to influence the NHC and JTWC forecast errors.
The mean absolute error of the official tropical cyclone (TC) intensity forecasts from the National Hurricane Center (NHC) and the Joint Typhoon Warning Center (JTWC) shows limited evidence of improvement over the past two decades. This result has sometimes erroneously been used to conclude that little or no progress has been made in the TC intensity guidance models. This article documents statistically significant improvements in operational TC intensity guidance over the past 24 years (1989–2012) in four tropical cyclone basins (Atlantic, eastern North Pacific, western North Pacific, and Southern Hemisphere). Errors from the best available model have decreased at 1%–2% yr−1 at 24–72 h, with faster improvement rates at 96 and 120 h. Although these rates are only about one-third to one-half of the rates of reduction of the track forecast models, most are statistically significant at the 95% level. These error reductions resulted from improvements in statistical–dynamical intensity models and consensus techniques that combine information from statistical–dynamical and dynamical models. The reason that the official NHC and JTWC intensity forecast errors have decreased slower than the guidance errors is because in the first half of the analyzed period, their subjective forecasts were more accurate than any of the available guidance. It is only in the last decade that the objective intensity guidance has become accurate enough to influence the NHC and JTWC forecast errors.
Abstract
To study tropical cyclones and generate forecast applications using satellite observations, researchers often consolidate disparate sources of raw and ancillary data. Data consolidation involves obtaining, collocating, and intercalibrating data from different sensors and derived products; calculating environmental diagnostics from a homogeneous source; and standardizing these various products for a straightforward analysis. To alleviate preprocessing issues and provide a long-term, global digital dataset of tropical cyclone satellite observations, we construct the Tropical Cyclone Precipitation, Infrared, Microwave, and Environmental Dataset (TC PRIMED). TC PRIMED contains tropical cyclone–centric 1) intercalibrated, multichannel, multisensor microwave brightness temperatures, 2) retrieved rainfall from NASA’s Goddard Profiling Algorithm (GPROF), 3) nearly coincident geostationary satellite infrared brightness temperatures and derived metrics, 4) tropical cyclone position and intensity information, 5) ECMWF fifth-generation reanalysis fields and derived environmental diagnostics, and 6) precipitation radar observations from the TRMM and GPM Core Observatory satellites. TC PRIMED consists of over 176,000 overpasses of 2,101 storms from 1998 to 2019, providing researchers with an analysis-ready dataset to promote and support research into improving our understanding of the relationship between tropical cyclone convective and precipitation structure, intensity, and environment. Here, we briefly describe data sources and processing steps to create TC PRIMED. To demonstrate TC PRIMED’s potential utility for studying important tropical cyclone processes and for application development, we present a shear-relative composite analysis of several multisensor satellite variables relative to the tropical cyclone lifetime maximum intensity. The composite analysis provides a simple example of how TC PRIMED can benefit future studies to advance our understanding of tropical cyclones and improve forecasts.
Abstract
To study tropical cyclones and generate forecast applications using satellite observations, researchers often consolidate disparate sources of raw and ancillary data. Data consolidation involves obtaining, collocating, and intercalibrating data from different sensors and derived products; calculating environmental diagnostics from a homogeneous source; and standardizing these various products for a straightforward analysis. To alleviate preprocessing issues and provide a long-term, global digital dataset of tropical cyclone satellite observations, we construct the Tropical Cyclone Precipitation, Infrared, Microwave, and Environmental Dataset (TC PRIMED). TC PRIMED contains tropical cyclone–centric 1) intercalibrated, multichannel, multisensor microwave brightness temperatures, 2) retrieved rainfall from NASA’s Goddard Profiling Algorithm (GPROF), 3) nearly coincident geostationary satellite infrared brightness temperatures and derived metrics, 4) tropical cyclone position and intensity information, 5) ECMWF fifth-generation reanalysis fields and derived environmental diagnostics, and 6) precipitation radar observations from the TRMM and GPM Core Observatory satellites. TC PRIMED consists of over 176,000 overpasses of 2,101 storms from 1998 to 2019, providing researchers with an analysis-ready dataset to promote and support research into improving our understanding of the relationship between tropical cyclone convective and precipitation structure, intensity, and environment. Here, we briefly describe data sources and processing steps to create TC PRIMED. To demonstrate TC PRIMED’s potential utility for studying important tropical cyclone processes and for application development, we present a shear-relative composite analysis of several multisensor satellite variables relative to the tropical cyclone lifetime maximum intensity. The composite analysis provides a simple example of how TC PRIMED can benefit future studies to advance our understanding of tropical cyclones and improve forecasts.
Abstract
—J. BLUNDEN, T. BOYER, AND E. BARTOW-GILLIES
Earth’s global climate system is vast, complex, and intricately interrelated. Many areas are influenced by global-scale phenomena, including the “triple dip” La Niña conditions that prevailed in the eastern Pacific Ocean nearly continuously from mid-2020 through all of 2022; by regional phenomena such as the positive winter and summer North Atlantic Oscillation that impacted weather in parts the Northern Hemisphere and the negative Indian Ocean dipole that impacted weather in parts of the Southern Hemisphere; and by more localized systems such as high-pressure heat domes that caused extreme heat in different areas of the world. Underlying all these natural short-term variabilities are long-term climate trends due to continuous increases since the beginning of the Industrial Revolution in the atmospheric concentrations of Earth’s major greenhouse gases.
In 2022, the annual global average carbon dioxide concentration in the atmosphere rose to 417.1±0.1 ppm, which is 50% greater than the pre-industrial level. Global mean tropospheric methane abundance was 165% higher than its pre-industrial level, and nitrous oxide was 24% higher. All three gases set new record-high atmospheric concentration levels in 2022.
Sea-surface temperature patterns in the tropical Pacific characteristic of La Niña and attendant atmospheric patterns tend to mitigate atmospheric heat gain at the global scale, but the annual global surface temperature across land and oceans was still among the six highest in records dating as far back as the mid-1800s. It was the warmest La Niña year on record. Many areas observed record or near-record heat. Europe as a whole observed its second-warmest year on record, with sixteen individual countries observing record warmth at the national scale. Records were shattered across the continent during the summer months as heatwaves plagued the region. On 18 July, 104 stations in France broke their all-time records. One day later, England recorded a temperature of 40°C for the first time ever. China experienced its second-warmest year and warmest summer on record. In the Southern Hemisphere, the average temperature across New Zealand reached a record high for the second year in a row. While Australia’s annual temperature was slightly below the 1991–2020 average, Onslow Airport in Western Australia reached 50.7°C on 13 January, equaling Australia's highest temperature on record.
While fewer in number and locations than record-high temperatures, record cold was also observed during the year. Southern Africa had its coldest August on record, with minimum temperatures as much as 5°C below normal over Angola, western Zambia, and northern Namibia. Cold outbreaks in the first half of December led to many record-low daily minimum temperature records in eastern Australia.
The effects of rising temperatures and extreme heat were apparent across the Northern Hemisphere, where snow-cover extent by June 2022 was the third smallest in the 56-year record, and the seasonal duration of lake ice cover was the fourth shortest since 1980. More frequent and intense heatwaves contributed to the second-greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Glaciers in the Swiss Alps lost a record 6% of their volume. In South America, the combination of drought and heat left many central Andean glaciers snow free by mid-summer in early 2022; glacial ice has a much lower albedo than snow, leading to accelerated heating of the glacier. Across the global cryosphere, permafrost temperatures continued to reach record highs at many high-latitude and mountain locations.
In the high northern latitudes, the annual surface-air temperature across the Arctic was the fifth highest in the 123-year record. The seasonal Arctic minimum sea-ice extent, typically reached in September, was the 11th-smallest in the 43-year record; however, the amount of multiyear ice—ice that survives at least one summer melt season—remaining in the Arctic continued to decline. Since 2012, the Arctic has been nearly devoid of ice more than four years old.
In Antarctica, an unusually large amount of snow and ice fell over the continent in 2022 due to several landfalling atmospheric rivers, which contributed to the highest annual surface mass balance, 15% to 16% above the 1991–2020 normal, since the start of two reanalyses records dating to 1980. It was the second-warmest year on record for all five of the long-term staffed weather stations on the Antarctic Peninsula. In East Antarctica, a heatwave event led to a new all-time record-high temperature of −9.4°C—44°C above the March average—on 18 March at Dome C. This was followed by the collapse of the critically unstable Conger Ice Shelf. More than 100 daily low sea-ice extent and sea-ice area records were set in 2022, including two new all-time annual record lows in net sea-ice extent and area in February.
Across the world’s oceans, global mean sea level was record high for the 11th consecutive year, reaching 101.2 mm above the 1993 average when satellite altimetry measurements began, an increase of 3.3±0.7 over 2021. Globally-averaged ocean heat content was also record high in 2022, while the global sea-surface temperature was the sixth highest on record, equal with 2018. Approximately 58% of the ocean surface experienced at least one marine heatwave in 2022. In the Bay of Plenty, New Zealand’s longest continuous marine heatwave was recorded.
A total of 85 named tropical storms were observed during the Northern and Southern Hemisphere storm seasons, close to the 1991–2020 average of 87. There were three Category 5 tropical cyclones across the globe—two in the western North Pacific and one in the North Atlantic. This was the fewest Category 5 storms globally since 2017. Globally, the accumulated cyclone energy was the lowest since reliable records began in 1981. Regardless, some storms caused massive damage. In the North Atlantic, Hurricane Fiona became the most intense and most destructive tropical or post-tropical cyclone in Atlantic Canada’s history, while major Hurricane Ian killed more than 100 people and became the third costliest disaster in the United States, causing damage estimated at $113 billion U.S. dollars. In the South Indian Ocean, Tropical Cyclone Batsirai dropped 2044 mm of rain at Commerson Crater in Réunion. The storm also impacted Madagascar, where 121 fatalities were reported.
As is typical, some areas around the world were notably dry in 2022 and some were notably wet. In August, record high areas of land across the globe (6.2%) were experiencing extreme drought. Overall, 29% of land experienced moderate or worse categories of drought during the year. The largest drought footprint in the contiguous United States since 2012 (63%) was observed in late October. The record-breaking megadrought of central Chile continued in its 13th consecutive year, and 80-year record-low river levels in northern Argentina and Paraguay disrupted fluvial transport. In China, the Yangtze River reached record-low values. Much of equatorial eastern Africa had five consecutive below-normal rainy seasons by the end of 2022, with some areas receiving record-low precipitation totals for the year. This ongoing 2.5-year drought is the most extensive and persistent drought event in decades, and led to crop failure, millions of livestock deaths, water scarcity, and inflated prices for staple food items.
In South Asia, Pakistan received around three times its normal volume of monsoon precipitation in August, with some regions receiving up to eight times their expected monthly totals. Resulting floods affected over 30 million people, caused over 1700 fatalities, led to major crop and property losses, and was recorded as one of the world’s costliest natural disasters of all time. Near Rio de Janeiro, Brazil, Petrópolis received 530 mm in 24 hours on 15 February, about 2.5 times the monthly February average, leading to the worst disaster in the city since 1931 with over 230 fatalities.
On 14–15 January, the Hunga Tonga-Hunga Ha'apai submarine volcano in the South Pacific erupted multiple times. The injection of water into the atmosphere was unprecedented in both magnitude—far exceeding any previous values in the 17-year satellite record—and altitude as it penetrated into the mesosphere. The amount of water injected into the stratosphere is estimated to be 146±5 Terragrams, or ∼10% of the total amount in the stratosphere. It may take several years for the water plume to dissipate, and it is currently unknown whether this eruption will have any long-term climate effect.
Abstract
—J. BLUNDEN, T. BOYER, AND E. BARTOW-GILLIES
Earth’s global climate system is vast, complex, and intricately interrelated. Many areas are influenced by global-scale phenomena, including the “triple dip” La Niña conditions that prevailed in the eastern Pacific Ocean nearly continuously from mid-2020 through all of 2022; by regional phenomena such as the positive winter and summer North Atlantic Oscillation that impacted weather in parts the Northern Hemisphere and the negative Indian Ocean dipole that impacted weather in parts of the Southern Hemisphere; and by more localized systems such as high-pressure heat domes that caused extreme heat in different areas of the world. Underlying all these natural short-term variabilities are long-term climate trends due to continuous increases since the beginning of the Industrial Revolution in the atmospheric concentrations of Earth’s major greenhouse gases.
In 2022, the annual global average carbon dioxide concentration in the atmosphere rose to 417.1±0.1 ppm, which is 50% greater than the pre-industrial level. Global mean tropospheric methane abundance was 165% higher than its pre-industrial level, and nitrous oxide was 24% higher. All three gases set new record-high atmospheric concentration levels in 2022.
Sea-surface temperature patterns in the tropical Pacific characteristic of La Niña and attendant atmospheric patterns tend to mitigate atmospheric heat gain at the global scale, but the annual global surface temperature across land and oceans was still among the six highest in records dating as far back as the mid-1800s. It was the warmest La Niña year on record. Many areas observed record or near-record heat. Europe as a whole observed its second-warmest year on record, with sixteen individual countries observing record warmth at the national scale. Records were shattered across the continent during the summer months as heatwaves plagued the region. On 18 July, 104 stations in France broke their all-time records. One day later, England recorded a temperature of 40°C for the first time ever. China experienced its second-warmest year and warmest summer on record. In the Southern Hemisphere, the average temperature across New Zealand reached a record high for the second year in a row. While Australia’s annual temperature was slightly below the 1991–2020 average, Onslow Airport in Western Australia reached 50.7°C on 13 January, equaling Australia's highest temperature on record.
While fewer in number and locations than record-high temperatures, record cold was also observed during the year. Southern Africa had its coldest August on record, with minimum temperatures as much as 5°C below normal over Angola, western Zambia, and northern Namibia. Cold outbreaks in the first half of December led to many record-low daily minimum temperature records in eastern Australia.
The effects of rising temperatures and extreme heat were apparent across the Northern Hemisphere, where snow-cover extent by June 2022 was the third smallest in the 56-year record, and the seasonal duration of lake ice cover was the fourth shortest since 1980. More frequent and intense heatwaves contributed to the second-greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Glaciers in the Swiss Alps lost a record 6% of their volume. In South America, the combination of drought and heat left many central Andean glaciers snow free by mid-summer in early 2022; glacial ice has a much lower albedo than snow, leading to accelerated heating of the glacier. Across the global cryosphere, permafrost temperatures continued to reach record highs at many high-latitude and mountain locations.
In the high northern latitudes, the annual surface-air temperature across the Arctic was the fifth highest in the 123-year record. The seasonal Arctic minimum sea-ice extent, typically reached in September, was the 11th-smallest in the 43-year record; however, the amount of multiyear ice—ice that survives at least one summer melt season—remaining in the Arctic continued to decline. Since 2012, the Arctic has been nearly devoid of ice more than four years old.
In Antarctica, an unusually large amount of snow and ice fell over the continent in 2022 due to several landfalling atmospheric rivers, which contributed to the highest annual surface mass balance, 15% to 16% above the 1991–2020 normal, since the start of two reanalyses records dating to 1980. It was the second-warmest year on record for all five of the long-term staffed weather stations on the Antarctic Peninsula. In East Antarctica, a heatwave event led to a new all-time record-high temperature of −9.4°C—44°C above the March average—on 18 March at Dome C. This was followed by the collapse of the critically unstable Conger Ice Shelf. More than 100 daily low sea-ice extent and sea-ice area records were set in 2022, including two new all-time annual record lows in net sea-ice extent and area in February.
Across the world’s oceans, global mean sea level was record high for the 11th consecutive year, reaching 101.2 mm above the 1993 average when satellite altimetry measurements began, an increase of 3.3±0.7 over 2021. Globally-averaged ocean heat content was also record high in 2022, while the global sea-surface temperature was the sixth highest on record, equal with 2018. Approximately 58% of the ocean surface experienced at least one marine heatwave in 2022. In the Bay of Plenty, New Zealand’s longest continuous marine heatwave was recorded.
A total of 85 named tropical storms were observed during the Northern and Southern Hemisphere storm seasons, close to the 1991–2020 average of 87. There were three Category 5 tropical cyclones across the globe—two in the western North Pacific and one in the North Atlantic. This was the fewest Category 5 storms globally since 2017. Globally, the accumulated cyclone energy was the lowest since reliable records began in 1981. Regardless, some storms caused massive damage. In the North Atlantic, Hurricane Fiona became the most intense and most destructive tropical or post-tropical cyclone in Atlantic Canada’s history, while major Hurricane Ian killed more than 100 people and became the third costliest disaster in the United States, causing damage estimated at $113 billion U.S. dollars. In the South Indian Ocean, Tropical Cyclone Batsirai dropped 2044 mm of rain at Commerson Crater in Réunion. The storm also impacted Madagascar, where 121 fatalities were reported.
As is typical, some areas around the world were notably dry in 2022 and some were notably wet. In August, record high areas of land across the globe (6.2%) were experiencing extreme drought. Overall, 29% of land experienced moderate or worse categories of drought during the year. The largest drought footprint in the contiguous United States since 2012 (63%) was observed in late October. The record-breaking megadrought of central Chile continued in its 13th consecutive year, and 80-year record-low river levels in northern Argentina and Paraguay disrupted fluvial transport. In China, the Yangtze River reached record-low values. Much of equatorial eastern Africa had five consecutive below-normal rainy seasons by the end of 2022, with some areas receiving record-low precipitation totals for the year. This ongoing 2.5-year drought is the most extensive and persistent drought event in decades, and led to crop failure, millions of livestock deaths, water scarcity, and inflated prices for staple food items.
In South Asia, Pakistan received around three times its normal volume of monsoon precipitation in August, with some regions receiving up to eight times their expected monthly totals. Resulting floods affected over 30 million people, caused over 1700 fatalities, led to major crop and property losses, and was recorded as one of the world’s costliest natural disasters of all time. Near Rio de Janeiro, Brazil, Petrópolis received 530 mm in 24 hours on 15 February, about 2.5 times the monthly February average, leading to the worst disaster in the city since 1931 with over 230 fatalities.
On 14–15 January, the Hunga Tonga-Hunga Ha'apai submarine volcano in the South Pacific erupted multiple times. The injection of water into the atmosphere was unprecedented in both magnitude—far exceeding any previous values in the 17-year satellite record—and altitude as it penetrated into the mesosphere. The amount of water injected into the stratosphere is estimated to be 146±5 Terragrams, or ∼10% of the total amount in the stratosphere. It may take several years for the water plume to dissipate, and it is currently unknown whether this eruption will have any long-term climate effect.