Search Results
You are looking at 1 - 6 of 6 items for :
- Author or Editor: John C. Marshall x
- Journal of Climate x
- Refine by Access: All Content x
Abstract
The role of “neutral vectors” in midlatitude air–sea interaction is studied in a simple coupled model. Neutral vectors—the right singular vectors of the linearized atmospheric model tendency matrix with the smallest singular values—are shown to act as pattern-specific amplifiers of ocean SST anomalies and dominate coupled behavior.
These ideas are developed in the framework of a previously developed analytical coupled model, which described the mutual interaction across the sea surface of atmospheric and oceanic Rossby waves. A numerical model with the same physics is developed that permits the consideration of nontrivial background conditions. It is shown that the atmospheric modes that are least damped, and thus the patterns most easily energized by stochastic forcing, are neutral vectors.
Abstract
The role of “neutral vectors” in midlatitude air–sea interaction is studied in a simple coupled model. Neutral vectors—the right singular vectors of the linearized atmospheric model tendency matrix with the smallest singular values—are shown to act as pattern-specific amplifiers of ocean SST anomalies and dominate coupled behavior.
These ideas are developed in the framework of a previously developed analytical coupled model, which described the mutual interaction across the sea surface of atmospheric and oceanic Rossby waves. A numerical model with the same physics is developed that permits the consideration of nontrivial background conditions. It is shown that the atmospheric modes that are least damped, and thus the patterns most easily energized by stochastic forcing, are neutral vectors.
Abstract
This paper examines trends in the southern annular mode (SAM) and the strength, position, and width of the Southern Hemisphere surface westerly wind jet in observations, reanalyses, and models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). First the period over 1951–2011 is considered, and it is shown that there are differences in the SAM and jet trends between the CMIP5 models, the Hadley Centre gridded SLP (HadSLP2r) dataset, and the Twentieth Century Reanalysis. The relationships between these trends demonstrate that the SAM index cannot be used to directly infer changes in any one kinematic property of the jet. The spatial structure of the observed trends in SLP and zonal winds is shown to be largest, but also most uncertain, in the southeastern Pacific. To constrain this uncertainty six reanalyses are included and compared with station-based observations of SLP. The CMIP5 mean SLP trends generally agree well with the direct observations, despite some climatological biases, while some reanalyses exhibit spuriously large SLP trends. Similarly, over the more reliable satellite era the spatial pattern of CMIP5 SLP trends is in excellent agreement with HadSLP2r, whereas several reanalyses are not. Then surface winds are compared with a satellite-based product, and it is shown that the CMIP5 mean trend is similar to observations in the core region of the westerlies, but that several reanalyses overestimate recent trends. The authors caution that studies examining the impact of wind changes on the Southern Ocean could be biased by these spuriously large trends in reanalysis products.
Abstract
This paper examines trends in the southern annular mode (SAM) and the strength, position, and width of the Southern Hemisphere surface westerly wind jet in observations, reanalyses, and models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). First the period over 1951–2011 is considered, and it is shown that there are differences in the SAM and jet trends between the CMIP5 models, the Hadley Centre gridded SLP (HadSLP2r) dataset, and the Twentieth Century Reanalysis. The relationships between these trends demonstrate that the SAM index cannot be used to directly infer changes in any one kinematic property of the jet. The spatial structure of the observed trends in SLP and zonal winds is shown to be largest, but also most uncertain, in the southeastern Pacific. To constrain this uncertainty six reanalyses are included and compared with station-based observations of SLP. The CMIP5 mean SLP trends generally agree well with the direct observations, despite some climatological biases, while some reanalyses exhibit spuriously large SLP trends. Similarly, over the more reliable satellite era the spatial pattern of CMIP5 SLP trends is in excellent agreement with HadSLP2r, whereas several reanalyses are not. Then surface winds are compared with a satellite-based product, and it is shown that the CMIP5 mean trend is similar to observations in the core region of the westerlies, but that several reanalyses overestimate recent trends. The authors caution that studies examining the impact of wind changes on the Southern Ocean could be biased by these spuriously large trends in reanalysis products.
Abstract
The large regional summer warming on the east coast of the northern Antarctic Peninsula (AP), which has taken place since the mid-1960s, has previously been proposed to be caused by a trend in the Southern Hemisphere Annular Mode (SAM). The authors utilize a high-resolution regional atmospheric model climatology (14-km grid spacing) to study the mechanisms that determine the response of the near-surface temperature to an increase in the SAM (ΔT/ΔSAM). Month-to-month variations in near-surface temperature and surface pressure are well represented by the model. It is found that north of ∼68°S, ΔT/ΔSAM is much larger on the eastern (lee) side than on the western (windward) side of the barrier. This is because of the enhanced westerly flow of relatively warm air over the barrier, which warms (and dries) further as it descends down the lee slope. The downward motion on the eastern side of the barrier causes a decrease in surface-mass balance and cloud cover. South of ∼68°S, vertical deflection across the barrier is greatly reduced and the contrast in ΔT/ΔSAM between the east and west sides of the barrier vanishes. In the northeastern part of the AP, the modeled ΔT/ΔSAM distribution is similar to the distribution derived from satellite infrared radiometer data. The region of strongest modeled temperature sensitivity to the SAM is where ice shelf collapse has recently taken place and does not extend farther south over the Larsen-C Ice Shelf.
Abstract
The large regional summer warming on the east coast of the northern Antarctic Peninsula (AP), which has taken place since the mid-1960s, has previously been proposed to be caused by a trend in the Southern Hemisphere Annular Mode (SAM). The authors utilize a high-resolution regional atmospheric model climatology (14-km grid spacing) to study the mechanisms that determine the response of the near-surface temperature to an increase in the SAM (ΔT/ΔSAM). Month-to-month variations in near-surface temperature and surface pressure are well represented by the model. It is found that north of ∼68°S, ΔT/ΔSAM is much larger on the eastern (lee) side than on the western (windward) side of the barrier. This is because of the enhanced westerly flow of relatively warm air over the barrier, which warms (and dries) further as it descends down the lee slope. The downward motion on the eastern side of the barrier causes a decrease in surface-mass balance and cloud cover. South of ∼68°S, vertical deflection across the barrier is greatly reduced and the contrast in ΔT/ΔSAM between the east and west sides of the barrier vanishes. In the northeastern part of the AP, the modeled ΔT/ΔSAM distribution is similar to the distribution derived from satellite infrared radiometer data. The region of strongest modeled temperature sensitivity to the SAM is where ice shelf collapse has recently taken place and does not extend farther south over the Larsen-C Ice Shelf.
Abstract
Since the mid-1960s, rapid regional summer warming has occurred on the east coast of the northern Antarctic Peninsula, with near-surface temperatures increasing by more than 2°C. This warming has contributed significantly to the collapse of the northern sections of the Larsen Ice Shelf. Coincident with this warming, the summer Southern Hemisphere Annular Mode (SAM) has exhibited a marked trend, suggested by modeling studies to be predominantly a response to anthropogenic forcing, resulting in increased westerlies across the northern peninsula.
Observations and reanalysis data are utilized to demonstrate that the changing SAM has played a key role in driving this local summer warming. It is proposed that the stronger summer westerly winds reduce the blocking effect of the Antarctic Peninsula and lead to a higher frequency of air masses being advected eastward over the orographic barrier of the northern Antarctic Peninsula. When this occurs, a combination of a climatological temperature gradient across the barrier and the formation of a föhn wind on the lee side typically results in a summer near-surface temperature sensitivity to the SAM that is 3 times greater on the eastern side of the peninsula than on the west. SAM variability is also shown to play a less important role in determining summer temperatures at stations west of the barrier in the northern peninsula (∼62°S), both at the surface and throughout the troposphere. This is in contrast to a station farther south (∼65°S) where the SAM exerts little influence.
Abstract
Since the mid-1960s, rapid regional summer warming has occurred on the east coast of the northern Antarctic Peninsula, with near-surface temperatures increasing by more than 2°C. This warming has contributed significantly to the collapse of the northern sections of the Larsen Ice Shelf. Coincident with this warming, the summer Southern Hemisphere Annular Mode (SAM) has exhibited a marked trend, suggested by modeling studies to be predominantly a response to anthropogenic forcing, resulting in increased westerlies across the northern peninsula.
Observations and reanalysis data are utilized to demonstrate that the changing SAM has played a key role in driving this local summer warming. It is proposed that the stronger summer westerly winds reduce the blocking effect of the Antarctic Peninsula and lead to a higher frequency of air masses being advected eastward over the orographic barrier of the northern Antarctic Peninsula. When this occurs, a combination of a climatological temperature gradient across the barrier and the formation of a föhn wind on the lee side typically results in a summer near-surface temperature sensitivity to the SAM that is 3 times greater on the eastern side of the peninsula than on the west. SAM variability is also shown to play a less important role in determining summer temperatures at stations west of the barrier in the northern peninsula (∼62°S), both at the surface and throughout the troposphere. This is in contrast to a station farther south (∼65°S) where the SAM exerts little influence.
Abstract
Commencing in 1956, observations made at Halley Research Station in Antarctica provide one of the longest continuous series of near-surface temperature observations from the Antarctic continent. Since few other records of comparable length are available, the Halley record has been used extensively in studies of long-term Antarctic climate variability and change. The record does not, however, come from a single location but is a composite of observations from a sequence of seven stations, all situated on the Brunt Ice Shelf, that range from around 10 to 50 km in distance from the coast. Until now, it has generally been assumed that temperature data from all of these stations could be combined into a single composite record with no adjustment. Here, we examine this assumption of homogeneity. Application of a statistical changepoint algorithm to the composite record detects a sudden cooling associated with the move from Halley IV to Halley V station in 1992. We show that this temperature step is consistent with local temperature gradients measured by a network of automatic weather stations and with those simulated by a high-resolution atmospheric model. These temperature gradients are strongest in the coastal region and result from the onshore advection of maritime air. The detected inhomogeneity could account for the weak cooling trend seen in the uncorrected composite record. In future, studies that make use of the Halley record will need to account for its inhomogeneity.
Abstract
Commencing in 1956, observations made at Halley Research Station in Antarctica provide one of the longest continuous series of near-surface temperature observations from the Antarctic continent. Since few other records of comparable length are available, the Halley record has been used extensively in studies of long-term Antarctic climate variability and change. The record does not, however, come from a single location but is a composite of observations from a sequence of seven stations, all situated on the Brunt Ice Shelf, that range from around 10 to 50 km in distance from the coast. Until now, it has generally been assumed that temperature data from all of these stations could be combined into a single composite record with no adjustment. Here, we examine this assumption of homogeneity. Application of a statistical changepoint algorithm to the composite record detects a sudden cooling associated with the move from Halley IV to Halley V station in 1992. We show that this temperature step is consistent with local temperature gradients measured by a network of automatic weather stations and with those simulated by a high-resolution atmospheric model. These temperature gradients are strongest in the coastal region and result from the onshore advection of maritime air. The detected inhomogeneity could account for the weak cooling trend seen in the uncorrected composite record. In future, studies that make use of the Halley record will need to account for its inhomogeneity.
Abstract
Three interrelated climate phenomena are at the center of the Climate Variability and Predictability (CLIVAR) Atlantic research: tropical Atlantic variability (TAV), the North Atlantic Oscillation (NAO), and the Atlantic meridional overturning circulation (MOC). These phenomena produce a myriad of impacts on society and the environment on seasonal, interannual, and longer time scales through variability manifest as coherent fluctuations in ocean and land temperature, rainfall, and extreme events. Improved understanding of this variability is essential for assessing the likely range of future climate fluctuations and the extent to which they may be predictable, as well as understanding the potential impact of human-induced climate change. CLIVAR is addressing these issues through prioritized and integrated plans for short-term and sustained observations, basin-scale reanalysis, and modeling and theoretical investigations of the coupled Atlantic climate system and its links to remote regions. In this paper, a brief review of the state of understanding of Atlantic climate variability and achievements to date is provided. Considerable discussion is given to future challenges related to building and sustaining observing systems, developing synthesis strategies to support understanding and attribution of observed change, understanding sources of predictability, and developing prediction systems in order to meet the scientific objectives of the CLIVAR Atlantic program.
Abstract
Three interrelated climate phenomena are at the center of the Climate Variability and Predictability (CLIVAR) Atlantic research: tropical Atlantic variability (TAV), the North Atlantic Oscillation (NAO), and the Atlantic meridional overturning circulation (MOC). These phenomena produce a myriad of impacts on society and the environment on seasonal, interannual, and longer time scales through variability manifest as coherent fluctuations in ocean and land temperature, rainfall, and extreme events. Improved understanding of this variability is essential for assessing the likely range of future climate fluctuations and the extent to which they may be predictable, as well as understanding the potential impact of human-induced climate change. CLIVAR is addressing these issues through prioritized and integrated plans for short-term and sustained observations, basin-scale reanalysis, and modeling and theoretical investigations of the coupled Atlantic climate system and its links to remote regions. In this paper, a brief review of the state of understanding of Atlantic climate variability and achievements to date is provided. Considerable discussion is given to future challenges related to building and sustaining observing systems, developing synthesis strategies to support understanding and attribution of observed change, understanding sources of predictability, and developing prediction systems in order to meet the scientific objectives of the CLIVAR Atlantic program.