Search Results
You are looking at 1 - 4 of 4 items for :
- Author or Editor: John F. Miller x
- Article x
- Refine by Access: All Content x
Under the auspices of the National Polar-orbiting Operational Environmental Satellite System's (NPOESS) Integrated Program Office (IPO), the Naval Research Laboratory (NRL) has developed “NexSat” (www.nrlmry.navy.mil/nexsat_pages/nexsat_home.html)—a public-access online demonstration over the continental United States (CONUS) of near-real-time environmental products highlighting future applications from the Visible/Infrared Imager/Radiometer Suite (VIIRS). Based on a collection of operational and research-grade satellite observing systems, NexSat products include the detection, enhancement, and where applicable, physical retrieval of deep convection, low clouds, light sources at night, rainfall, snow cover, aircraft contrails, thin cirrus layers, dust storms, and cloud/aerosol properties, all presented in the context of value-added imagery. The purpose of NexSat is threefold: 1) to communicate the advanced capabilities anticipated from VIIRS, 2) to present this information in near–real time for use by forecasters, resource managers, emergency response teams, civic planners, the aviation community, and various government agencies, and 3) to augment the NRL algorithm development multisensor/model-fusion test bed for accelerated transitions to operations during the NPOESS era. This paper presents an overview of NexSat, highlighting selected products from the diverse meteorological phenomenology over the CONUS.
Under the auspices of the National Polar-orbiting Operational Environmental Satellite System's (NPOESS) Integrated Program Office (IPO), the Naval Research Laboratory (NRL) has developed “NexSat” (www.nrlmry.navy.mil/nexsat_pages/nexsat_home.html)—a public-access online demonstration over the continental United States (CONUS) of near-real-time environmental products highlighting future applications from the Visible/Infrared Imager/Radiometer Suite (VIIRS). Based on a collection of operational and research-grade satellite observing systems, NexSat products include the detection, enhancement, and where applicable, physical retrieval of deep convection, low clouds, light sources at night, rainfall, snow cover, aircraft contrails, thin cirrus layers, dust storms, and cloud/aerosol properties, all presented in the context of value-added imagery. The purpose of NexSat is threefold: 1) to communicate the advanced capabilities anticipated from VIIRS, 2) to present this information in near–real time for use by forecasters, resource managers, emergency response teams, civic planners, the aviation community, and various government agencies, and 3) to augment the NRL algorithm development multisensor/model-fusion test bed for accelerated transitions to operations during the NPOESS era. This paper presents an overview of NexSat, highlighting selected products from the diverse meteorological phenomenology over the CONUS.
Abstract
In the arid and semiarid southwestern United States, both cool- and warm-season storms result in flash flooding, although the former storms have been much less studied. Here, we investigate a catalog of 52 flash-flood-producing storms over the 1996–2021 period for the arid Las Vegas Wash watershed using rain gauge observations, reanalysis fields, radar reflectivities, cloud-to-ground lightning flashes, and streamflow records. Our analyses focus on the hydroclimatology, convective intensity, and evolution of these storms. At the synoptic scale, cool-season storms are associated with open wave and cutoff low weather patterns, whereas warm-season storms are linked to classic and troughing North American monsoon (NAM) patterns. At the storm scale, cool-season events are southwesterly and southeasterly under open wave and cutoff low conditions, respectively, with long duration and low to moderate rainfall intensity. Warm-season storms, however, are characterized by short-duration, high-intensity rainfall, with either no apparent direction or southwesterly under classic and troughing NAM patterns, respectively. Atmospheric rivers and deep convection are the principal agents for the extreme rainfall and upper-tail flash floods in cool and warm seasons, respectively. Additionally, intense rainfall over the developed low valley is imperative for urban flash flooding. The evolution properties of seasonal storms and the resulting streamflows show that peak flows of comparable magnitude are “intensity driven” in the warm season but “volume driven” in the cool season. Furthermore, the distinctive impacts of complex terrain and climate change on rainfall properties are discussed with respect to storm seasonality.
Abstract
In the arid and semiarid southwestern United States, both cool- and warm-season storms result in flash flooding, although the former storms have been much less studied. Here, we investigate a catalog of 52 flash-flood-producing storms over the 1996–2021 period for the arid Las Vegas Wash watershed using rain gauge observations, reanalysis fields, radar reflectivities, cloud-to-ground lightning flashes, and streamflow records. Our analyses focus on the hydroclimatology, convective intensity, and evolution of these storms. At the synoptic scale, cool-season storms are associated with open wave and cutoff low weather patterns, whereas warm-season storms are linked to classic and troughing North American monsoon (NAM) patterns. At the storm scale, cool-season events are southwesterly and southeasterly under open wave and cutoff low conditions, respectively, with long duration and low to moderate rainfall intensity. Warm-season storms, however, are characterized by short-duration, high-intensity rainfall, with either no apparent direction or southwesterly under classic and troughing NAM patterns, respectively. Atmospheric rivers and deep convection are the principal agents for the extreme rainfall and upper-tail flash floods in cool and warm seasons, respectively. Additionally, intense rainfall over the developed low valley is imperative for urban flash flooding. The evolution properties of seasonal storms and the resulting streamflows show that peak flows of comparable magnitude are “intensity driven” in the warm season but “volume driven” in the cool season. Furthermore, the distinctive impacts of complex terrain and climate change on rainfall properties are discussed with respect to storm seasonality.
Abstract
The inner shelf, the transition zone between the surfzone and the midshelf, is a dynamically complex region with the evolution of circulation and stratification driven by multiple physical processes. Cross-shelf exchange through the inner shelf has important implications for coastal water quality, ecological connectivity, and lateral movement of sediment and heat. The Inner-Shelf Dynamics Experiment (ISDE) was an intensive, coordinated, multi-institution field experiment from September–October 2017, conducted from the midshelf, through the inner shelf, and into the surfzone near Point Sal, California. Satellite, airborne, shore- and ship-based remote sensing, in-water moorings and ship-based sampling, and numerical ocean circulation models forced by winds, waves, and tides were used to investigate the dynamics governing the circulation and transport in the inner shelf and the role of coastline variability on regional circulation dynamics. Here, the following physical processes are highlighted: internal wave dynamics from the midshelf to the inner shelf; flow separation and eddy shedding off Point Sal; offshore ejection of surfzone waters from rip currents; and wind-driven subtidal circulation dynamics. The extensive dataset from ISDE allows for unprecedented investigations into the role of physical processes in creating spatial heterogeneity, and nonlinear interactions between various inner-shelf physical processes. Overall, the highly spatially and temporally resolved oceanographic measurements and numerical simulations of ISDE provide a central framework for studies exploring this complex and fascinating region of the ocean.
Abstract
The inner shelf, the transition zone between the surfzone and the midshelf, is a dynamically complex region with the evolution of circulation and stratification driven by multiple physical processes. Cross-shelf exchange through the inner shelf has important implications for coastal water quality, ecological connectivity, and lateral movement of sediment and heat. The Inner-Shelf Dynamics Experiment (ISDE) was an intensive, coordinated, multi-institution field experiment from September–October 2017, conducted from the midshelf, through the inner shelf, and into the surfzone near Point Sal, California. Satellite, airborne, shore- and ship-based remote sensing, in-water moorings and ship-based sampling, and numerical ocean circulation models forced by winds, waves, and tides were used to investigate the dynamics governing the circulation and transport in the inner shelf and the role of coastline variability on regional circulation dynamics. Here, the following physical processes are highlighted: internal wave dynamics from the midshelf to the inner shelf; flow separation and eddy shedding off Point Sal; offshore ejection of surfzone waters from rip currents; and wind-driven subtidal circulation dynamics. The extensive dataset from ISDE allows for unprecedented investigations into the role of physical processes in creating spatial heterogeneity, and nonlinear interactions between various inner-shelf physical processes. Overall, the highly spatially and temporally resolved oceanographic measurements and numerical simulations of ISDE provide a central framework for studies exploring this complex and fascinating region of the ocean.