Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: John G. W. Kelley x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
Colin Ware, John G.W. Kelley, and David Pilar

Considerable effort has gone into building numerical weather and ocean prediction models during the past 50 years. Less effort has gone into the visual representation of output from those forecast models and many of the techniques used are known to be ineffective. The effectiveness of a data display depends on how well critical patterns can be perceived. This paper outlines a set of perceptual principles for what makes a good representation of a 2D vector field and shows how these principles can be used for the portrayal of currents, winds, and waves. Examples are given from a series of evaluation studies that examine the optimal representation of these variables. The results suggest that for static graphic presentations, equally spaced streamlines may be optimal. If wind barbs are curved to follow streamlines, perception of local wind speed and direction as well as the overall pattern is improved. For animated portrayals of model output, animated streamlets can perceptually separate layers of information so that atmospheric pressure and surface temperature can clearly be shown simultaneously with surface winds.

Full access
John G. W. Kelley, Joseph M. Russo, J. Ronald Eyton, and Toby N. Carlson

A technique called Model Output Enhancement (MOE) has been developed for the generation and display of mesoscale weather forecasts. The MOE technique derives mesoscale or high-resolution (order of 1 km) weather forecasts from synoptic-scale numerical weather-prediction models by modifying model output with geophysical and land-cover data. Mesoscale forecasts generated by the MOE technique are displayed as color-class maps overlaid on perspective plots of terrain. The MOE technique has been demonstrated in the generation of mesoscale maximum-temperature and minimum-temperature forecasts for case-study days of clear-sky conditions over the Commonwealth of Pennsylvania. The generated forecasts were evaluated using data from selected climatological stations.

Full access
Suzanne Van Cooten, Kevin E. Kelleher, Kenneth Howard, Jian Zhang, Jonathan J. Gourley, John S. Kain, Kodi Nemunaitis-Monroe, Zac Flamig, Heather Moser, Ami Arthur, Carrie Langston, Randall Kolar, Yang Hong, Kendra Dresback, Evan Tromble, Humberto Vergara, Richard A Luettich Jr., Brian Blanton, Howard Lander, Ken Galluppi, Jessica Proud Losego, Cheryl Ann Blain, Jack Thigpen, Katie Mosher, Darin Figurskey, Michael Moneypenny, Jonathan Blaes, Jeff Orrock, Rich Bandy, Carin Goodall, John G. W. Kelley, Jason Greenlaw, Micah Wengren, Dave Eslinger, Jeff Payne, Geno Olmi, John Feldt, John Schmidt, Todd Hamill, Robert Bacon, Robert Stickney, and Lundie Spence

The objective of the Coastal and Inland Flooding Observation and Warning (CI-FLOW) project is to prototype new hydrometeorologic techniques to address a critical NOAA service gap: routine total water level predictions for tidally influenced watersheds. Since February 2000, the project has focused on developing a coupled modeling system to accurately account for water at all locations in a coastal watershed by exchanging data between atmospheric, hydrologic, and hydrodynamic models. These simulations account for the quantity of water associated with waves, tides, storm surge, rivers, and rainfall, including interactions at the tidal/surge interface.

Within this project, CI-FLOW addresses the following goals: i) apply advanced weather and oceanographic monitoring and prediction techniques to the coastal environment; ii) prototype an automated hydrometeorologic data collection and prediction system; iii) facilitate interdisciplinary and multiorganizational collaborations; and iv) enhance techniques and technologies that improve actionable hydrologic/hydrodynamic information to reduce the impacts of coastal flooding. Results are presented for Hurricane Isabel (2003), Hurricane Earl (2010), and Tropical Storm Nicole (2010) for the Tar–Pamlico and Neuse River basins of North Carolina. This area was chosen, in part, because of the tremendous damage inflicted by Hurricanes Dennis and Floyd (1999). The vision is to transition CI-FLOW research findings and technologies to other U.S. coastal watersheds.

Full access