Search Results
You are looking at 1 - 3 of 3 items for :
- Author or Editor: John Gilson x
- Journal of Atmospheric and Oceanic Technology x
- Refine by Access: All Content x
Abstract
Using more than 10 years of Argo temperature and salinity profiles (2004–14), a new optimal interpolation (OI) of the upper ocean in the equatorial Pacific is presented. Following Roemmich and Gilson’s procedures, which were formulated for describing monthly large-scale anomalies, here every 5 days anomaly fields are constructed with improvements in the OI spatial covariance function and by including the time domain. The comparison of Argo maps with independent observations, from the TAO/TRITON array, and with satellite sea surface height (SSH), demonstrates that Argo is able to represent around 70%–80% of the variance at intraseasonal time scales (periods of 20–100 days) and more than 90% of the variance for the seasonal-to-longer-term variability. The RMS difference between Argo and TAO/TRITON temperatures is lower than 1°C and is around 1.5 cm when the Argo steric height is compared to SSH. This study also assesses the efficacy of different observing system components and combinations, such as SSH, TAO/TRITON, and Argo, for estimating subsurface temperature. Salinity investigations demonstrate its critical importance for density near the surface in the western Pacific. Objective error estimates from the OI are used to evaluate different sampling strategies, such as the recent deployment of 41 Argo floats along the Pacific equator. Argo’s high spatial resolution compared with that of the moored array makes it better suited for studying spatial patterns of variability and propagation on intraseasonal and longer periods, but it is less well suited for studying variability on periods shorter than 20 days at point locations. This work is a step toward better utilization of existing datasets, including Argo, and toward redesigning the Tropical Pacific Observing System.
Abstract
Using more than 10 years of Argo temperature and salinity profiles (2004–14), a new optimal interpolation (OI) of the upper ocean in the equatorial Pacific is presented. Following Roemmich and Gilson’s procedures, which were formulated for describing monthly large-scale anomalies, here every 5 days anomaly fields are constructed with improvements in the OI spatial covariance function and by including the time domain. The comparison of Argo maps with independent observations, from the TAO/TRITON array, and with satellite sea surface height (SSH), demonstrates that Argo is able to represent around 70%–80% of the variance at intraseasonal time scales (periods of 20–100 days) and more than 90% of the variance for the seasonal-to-longer-term variability. The RMS difference between Argo and TAO/TRITON temperatures is lower than 1°C and is around 1.5 cm when the Argo steric height is compared to SSH. This study also assesses the efficacy of different observing system components and combinations, such as SSH, TAO/TRITON, and Argo, for estimating subsurface temperature. Salinity investigations demonstrate its critical importance for density near the surface in the western Pacific. Objective error estimates from the OI are used to evaluate different sampling strategies, such as the recent deployment of 41 Argo floats along the Pacific equator. Argo’s high spatial resolution compared with that of the moored array makes it better suited for studying spatial patterns of variability and propagation on intraseasonal and longer periods, but it is less well suited for studying variability on periods shorter than 20 days at point locations. This work is a step toward better utilization of existing datasets, including Argo, and toward redesigning the Tropical Pacific Observing System.
Abstract
Two significant instrument biases have been identified in the in situ profile data used to estimate globally integrated upper-ocean heat content. A large cold bias was discovered in a small fraction of Argo floats along with a smaller but more prevalent warm bias in expendable bathythermograph (XBT) data. These biases appear to have caused the bulk of the upper-ocean cooling signal reported by Lyman et al. between 2003 and 2005. These systematic data errors are significantly larger than sampling errors in recent years and are the dominant sources of error in recent estimates of globally integrated upper-ocean heat content variability. The bias in the XBT data is found to be consistent with errors in the fall-rate equations, suggesting a physical explanation for that bias. With biased profiles discarded, no significant warming or cooling is observed in upper-ocean heat content between 2003 and 2006.
Abstract
Two significant instrument biases have been identified in the in situ profile data used to estimate globally integrated upper-ocean heat content. A large cold bias was discovered in a small fraction of Argo floats along with a smaller but more prevalent warm bias in expendable bathythermograph (XBT) data. These biases appear to have caused the bulk of the upper-ocean cooling signal reported by Lyman et al. between 2003 and 2005. These systematic data errors are significantly larger than sampling errors in recent years and are the dominant sources of error in recent estimates of globally integrated upper-ocean heat content variability. The bias in the XBT data is found to be consistent with errors in the fall-rate equations, suggesting a physical explanation for that bias. With biased profiles discarded, no significant warming or cooling is observed in upper-ocean heat content between 2003 and 2006.
Abstract
Deployment of Deep Argo regional pilot arrays is underway as a step toward a global array of 1250 surface-to-bottom profiling floats embedded in the upper-ocean (2000 m) Argo Program. Of the 80 active Deep Argo floats as of July 2019, 55 are Deep Sounding Oceanographic Lagrangian Observer (SOLO) 6000-m instruments, and the rest are composed of three additional models profiling to either 4000 or 6000 m. Early success of the Deep SOLO is owed partly to its evolution from the Core Argo SOLO-II. Here, Deep SOLO design choices are described, including the spherical glass pressure housing, the hydraulics system, and the passive bottom detection system. Operation of Deep SOLO is flexible, with the mission parameters being adjustable from shore via Iridium communications. Long lifetime is a key element in sustaining a global array, and Deep SOLO combines a long battery life of over 200 cycles to 6000 m with robust operation and a low failure rate. The scientific value of Deep SOLO is illustrated, including examples of its ability (i) to observe large-scale spatial and temporal variability in deep ocean temperature and salinity, (ii) to sample newly formed water masses year-round and within a few meters of the sea floor, and (iii) to explore the poorly known abyssal velocity field and deep circulation of the World Ocean. Deep SOLO’s full-depth range and its potential for global coverage are critical attributes for complementing the Core Argo Program and achieving these objectives.
Abstract
Deployment of Deep Argo regional pilot arrays is underway as a step toward a global array of 1250 surface-to-bottom profiling floats embedded in the upper-ocean (2000 m) Argo Program. Of the 80 active Deep Argo floats as of July 2019, 55 are Deep Sounding Oceanographic Lagrangian Observer (SOLO) 6000-m instruments, and the rest are composed of three additional models profiling to either 4000 or 6000 m. Early success of the Deep SOLO is owed partly to its evolution from the Core Argo SOLO-II. Here, Deep SOLO design choices are described, including the spherical glass pressure housing, the hydraulics system, and the passive bottom detection system. Operation of Deep SOLO is flexible, with the mission parameters being adjustable from shore via Iridium communications. Long lifetime is a key element in sustaining a global array, and Deep SOLO combines a long battery life of over 200 cycles to 6000 m with robust operation and a low failure rate. The scientific value of Deep SOLO is illustrated, including examples of its ability (i) to observe large-scale spatial and temporal variability in deep ocean temperature and salinity, (ii) to sample newly formed water masses year-round and within a few meters of the sea floor, and (iii) to explore the poorly known abyssal velocity field and deep circulation of the World Ocean. Deep SOLO’s full-depth range and its potential for global coverage are critical attributes for complementing the Core Argo Program and achieving these objectives.