Search Results
You are looking at 1 - 4 of 4 items for :
- Author or Editor: John H. Marsham x
- Bulletin of the American Meteorological Society x
- Refine by Access: All Content x
Solar cookers have the potential to help many of the world's poorest people, but the availability of sunshine is critical, with clouds or heavy atmospheric dust loads preventing cooking. Using wood for cooking leads to deforestation and air pollution that can cause or exacerbate health problems. For many poor people, obtaining wood is either time-consuming or expensive. Where conflicts have led to displaced people, wood shortages can become acute, leading to often violent clashes between locals and refugees. For many refugee women, this makes collecting wood a high-risk activity.
For eight years, Agrometeorological Applications Associates and TchadSolaire (AAA/TS) have been training refugees to manufacture and use solar cookers in northeastern Chad, where there are more than 240,000 refugees. Solar cookers are cheap and simple to make. They are clean and safe, greatly reduce the need for wood, reduce conf licts, reduce the time girls spend collecting wood (thus favoring education), and allow pasteurization of water. Around 140,000 people in the area are now eating solar-cooked food.
Using long-term records of direct sunshine from routine surface measurements and aerosol retrievals from SEVIRI on board Meteosat, we present a climatology of conditions suitable for solar cooking in North Africa and West Africa. Solar cookers could be widely used, on an average of about 90% of days in some locations, with large seasonal and spatial variations from changing solar elevations, dustiness, and cloudiness. The climatology will facilitate the future distribution of solar cookers by organizations such as AAA/TS, who work using high-tech information to improve the lives of millions utilizing simple technologies.
Solar cookers have the potential to help many of the world's poorest people, but the availability of sunshine is critical, with clouds or heavy atmospheric dust loads preventing cooking. Using wood for cooking leads to deforestation and air pollution that can cause or exacerbate health problems. For many poor people, obtaining wood is either time-consuming or expensive. Where conflicts have led to displaced people, wood shortages can become acute, leading to often violent clashes between locals and refugees. For many refugee women, this makes collecting wood a high-risk activity.
For eight years, Agrometeorological Applications Associates and TchadSolaire (AAA/TS) have been training refugees to manufacture and use solar cookers in northeastern Chad, where there are more than 240,000 refugees. Solar cookers are cheap and simple to make. They are clean and safe, greatly reduce the need for wood, reduce conf licts, reduce the time girls spend collecting wood (thus favoring education), and allow pasteurization of water. Around 140,000 people in the area are now eating solar-cooked food.
Using long-term records of direct sunshine from routine surface measurements and aerosol retrievals from SEVIRI on board Meteosat, we present a climatology of conditions suitable for solar cooking in North Africa and West Africa. Solar cookers could be widely used, on an average of about 90% of days in some locations, with large seasonal and spatial variations from changing solar elevations, dustiness, and cloudiness. The climatology will facilitate the future distribution of solar cookers by organizations such as AAA/TS, who work using high-tech information to improve the lives of millions utilizing simple technologies.
Abstract
Massive economic and population growth, and urbanization are expected to lead to a tripling of anthropogenic emissions in southern West Africa (SWA) between 2000 and 2030. However, the impacts of this on human health, ecosystems, food security, and the regional climate are largely unknown. An integrated assessment is challenging due to (a) a superposition of regional effects with global climate change; (b) a strong dependence on the variable West African monsoon; (c) incomplete scientific understanding of interactions between emissions, clouds, radiation, precipitation, and regional circulations; and (d) a lack of observations. This article provides an overview of the DACCIWA (Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa) project. DACCIWA will conduct extensive fieldwork in SWA to collect high-quality observations, spanning the entire process chain from surface-based natural and anthropogenic emissions to impacts on health, ecosystems, and climate. Combining the resulting benchmark dataset with a wide range of modeling activities will allow (a) assessment of relevant physical, chemical, and biological processes; (b) improvement of the monitoring of climate and atmospheric composition from space; and (c) development of the next generation of weather and climate models capable of representing coupled cloud–aerosol interactions. The latter will ultimately contribute to reduce uncertainties in climate predictions. DACCIWA collaborates closely with operational centers, international programs, policymakers, and users to actively guide sustainable future planning for West Africa. It is hoped that some of DACCIWA’s scientific findings and technical developments will be applicable to other monsoon regions.
Abstract
Massive economic and population growth, and urbanization are expected to lead to a tripling of anthropogenic emissions in southern West Africa (SWA) between 2000 and 2030. However, the impacts of this on human health, ecosystems, food security, and the regional climate are largely unknown. An integrated assessment is challenging due to (a) a superposition of regional effects with global climate change; (b) a strong dependence on the variable West African monsoon; (c) incomplete scientific understanding of interactions between emissions, clouds, radiation, precipitation, and regional circulations; and (d) a lack of observations. This article provides an overview of the DACCIWA (Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa) project. DACCIWA will conduct extensive fieldwork in SWA to collect high-quality observations, spanning the entire process chain from surface-based natural and anthropogenic emissions to impacts on health, ecosystems, and climate. Combining the resulting benchmark dataset with a wide range of modeling activities will allow (a) assessment of relevant physical, chemical, and biological processes; (b) improvement of the monitoring of climate and atmospheric composition from space; and (c) development of the next generation of weather and climate models capable of representing coupled cloud–aerosol interactions. The latter will ultimately contribute to reduce uncertainties in climate predictions. DACCIWA collaborates closely with operational centers, international programs, policymakers, and users to actively guide sustainable future planning for West Africa. It is hoped that some of DACCIWA’s scientific findings and technical developments will be applicable to other monsoon regions.
Abstract
Pan-Africa convection-permitting regional climate model simulations have been performed to study the impact of high resolution and the explicit representation of atmospheric moist convection on the present and future climate of Africa. These unique simulations have allowed European and African climate scientists to understand the critical role that the representation of convection plays in the ability of a contemporary climate model to capture climate and climate change, including many impact-relevant aspects such as rainfall variability and extremes. There are significant improvements in not only the small-scale characteristics of rainfall such as its intensity and diurnal cycle, but also in the large-scale circulation. Similarly, effects of explicit convection affect not only projected changes in rainfall extremes, dry spells, and high winds, but also continental-scale circulation and regional rainfall accumulations. The physics underlying such differences are in many cases expected to be relevant to all models that use parameterized convection. In some cases physical understanding of small-scale change means that we can provide regional decision-makers with new scales of information across a range of sectors. We demonstrate the potential value of these simulations both as scientific tools to increase climate process understanding and, when used with other models, for direct user applications. We describe how these ground-breaking simulations have been achieved under the U.K. Government’s Future Climate for Africa Programme. We anticipate a growing number of such simulations, which we advocate should become a routine component of climate projection, and encourage international coordination of such computationally and human-resource expensive simulations as effectively as possible.
Abstract
Pan-Africa convection-permitting regional climate model simulations have been performed to study the impact of high resolution and the explicit representation of atmospheric moist convection on the present and future climate of Africa. These unique simulations have allowed European and African climate scientists to understand the critical role that the representation of convection plays in the ability of a contemporary climate model to capture climate and climate change, including many impact-relevant aspects such as rainfall variability and extremes. There are significant improvements in not only the small-scale characteristics of rainfall such as its intensity and diurnal cycle, but also in the large-scale circulation. Similarly, effects of explicit convection affect not only projected changes in rainfall extremes, dry spells, and high winds, but also continental-scale circulation and regional rainfall accumulations. The physics underlying such differences are in many cases expected to be relevant to all models that use parameterized convection. In some cases physical understanding of small-scale change means that we can provide regional decision-makers with new scales of information across a range of sectors. We demonstrate the potential value of these simulations both as scientific tools to increase climate process understanding and, when used with other models, for direct user applications. We describe how these ground-breaking simulations have been achieved under the U.K. Government’s Future Climate for Africa Programme. We anticipate a growing number of such simulations, which we advocate should become a routine component of climate projection, and encourage international coordination of such computationally and human-resource expensive simulations as effectively as possible.
Abstract
Africa is poised for a revolution in the quality and relevance of weather predictions, with potential for great benefits in terms of human and economic security. This revolution will be driven by recent international progress in nowcasting, numerical weather prediction, theoretical tropical dynamics, and forecast communication, but will depend on suitable scientific investment being made. The commercial sector has recognized this opportunity and new forecast products are being made available to African stakeholders. At this time, it is vital that robust scientific methods are used to develop and evaluate the new generation of forecasts. The Global Challenges Research Fund (GCRF) African Science for Weather Information and Forecasting Techniques (SWIFT) project represents an international effort to advance scientific solutions across the fields of nowcasting, synoptic and short-range severe weather prediction, subseasonal-to-seasonal (S2S) prediction, user engagement, and forecast evaluation. This paper describes the opportunities facing African meteorology and the ways in which SWIFT is meeting those opportunities and identifying priority next steps. Delivery and maintenance of weather forecasting systems exploiting these new solutions requires a trained body of scientists with skills in research and training, modeling and operational prediction, and communications and leadership. By supporting partnerships between academia and operational agencies in four African partner countries, the SWIFT project is helping to build capacity and capability in African forecasting science. A highlight of SWIFT is the coordination of three weather forecasting “Testbeds”—the first of their kind in Africa—which have been used to bring new evaluation tools, research insights, user perspectives, and communications pathways into a semioperational forecasting environment.
Abstract
Africa is poised for a revolution in the quality and relevance of weather predictions, with potential for great benefits in terms of human and economic security. This revolution will be driven by recent international progress in nowcasting, numerical weather prediction, theoretical tropical dynamics, and forecast communication, but will depend on suitable scientific investment being made. The commercial sector has recognized this opportunity and new forecast products are being made available to African stakeholders. At this time, it is vital that robust scientific methods are used to develop and evaluate the new generation of forecasts. The Global Challenges Research Fund (GCRF) African Science for Weather Information and Forecasting Techniques (SWIFT) project represents an international effort to advance scientific solutions across the fields of nowcasting, synoptic and short-range severe weather prediction, subseasonal-to-seasonal (S2S) prediction, user engagement, and forecast evaluation. This paper describes the opportunities facing African meteorology and the ways in which SWIFT is meeting those opportunities and identifying priority next steps. Delivery and maintenance of weather forecasting systems exploiting these new solutions requires a trained body of scientists with skills in research and training, modeling and operational prediction, and communications and leadership. By supporting partnerships between academia and operational agencies in four African partner countries, the SWIFT project is helping to build capacity and capability in African forecasting science. A highlight of SWIFT is the coordination of three weather forecasting “Testbeds”—the first of their kind in Africa—which have been used to bring new evaluation tools, research insights, user perspectives, and communications pathways into a semioperational forecasting environment.