Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: John Haynes x
  • Monthly Weather Review x
  • Refine by Access: All Content x
Clear All Modify Search
Zhengxin Zhu
,
John Thuburn
,
Brian J. Hoskins
, and
Peter H. Haynes

Abstract

A vertical discretization of the primitive equations in a general vertical coordinate is described that enables a primitive equation model to use terrain-following sigma levels near the ground and isentropic levels higher up, with a smooth transition region in between. Therefore, it combines many of the advantages of the computational efficiency of σ coordinates and the predictive and diagnostic potential of θ coordinates, and should be particularly useful for general circulation models to be used for studies of stratosphere-troposphere exchange and middle-atmosphere transport of trace gases. It is shown that the semi-implicit time scheme can be used in a straightforward manner with this discretization. A discussion is given of how to optimize the transition from sigma levels to isentropic levels so as to avoid model levels crossing each other. A numerical problem caused when very shallow, very strong inversions occur in the temperature field is countered by a form of vertical-scale selective dissipation. Baroclinic wave life cycles and full general circulation simulations have been successfully performed with a modified version of the European Centre for Medium-Range Weather Forecasts model.

Full access
Carl E. Hane
,
John A. Haynes
,
David L. Andra Jr.
, and
Frederick H. Carr

Abstract

Mesoscale convective systems that affect a limited area within the southern plains of the United States during late morning hours during the warm season are investigated. A climatological study over a 5-yr period documents the initiation locations and times, tracks, associated severe weather, and relation to synoptic features over the lifetimes of 145 systems. An assessment is also made of system evolution in each case during the late morning. For a subset of 48 systems, vertical profiles of basic variables from Rapid Update Cycle (RUC) model analyses are used to characterize the environment of each system. Scatter diagrams and discriminant analyses are used to assess which environmental variables are most promising in helping to determine which of two classes of evolutionary character each system will follow.

Full access