Search Results
Abstract
Observed regional rainfall characteristics can be analyzed by examining both the frequency and intensity of different categories of rainfall. A complementary approach is to consider rainfall characteristics associated with regional synoptic regimes. These two approaches are combined here to examine daily rainfall characteristics over the Australian region, providing a target for model simulations. Using gridded daily rainfall data for the period 1997–2007, rainfall at each grid point and averaged over several sites is decomposed into the frequency of rainfall events and the intensity of rainfall associated with each event. Daily sea level pressure is classified using a self-organizing map, and rainfall on corresponding days is assigned to the resulting synoptic regimes. This technique is then used to evaluate rainfall in the new Australian Community Climate and Earth-System Simulator (ACCESS) global climate model and separate the influence of large-scale circulation errors and errors due to the representation of subgrid-scale physical processes. The model exhibits similar biases to many other global climate models, simulating too frequent light rainfall and heavy rainfall of insufficient intensity. These errors are associated with particular synoptic regimes over different sectors of the Australian continent and surrounding oceans. The model simulates only weak convective rainfall over land during the summer monsoon, and heavy rainfall associated with frontal systems over southern Australia is also not simulated. As the model captures the structure and frequency of synoptic patterns, but not the associated rainfall intensity or frequency, it is likely that the source of the rainfall errors lies in model physical parameterizations rather than large-scale dynamics.
Abstract
Observed regional rainfall characteristics can be analyzed by examining both the frequency and intensity of different categories of rainfall. A complementary approach is to consider rainfall characteristics associated with regional synoptic regimes. These two approaches are combined here to examine daily rainfall characteristics over the Australian region, providing a target for model simulations. Using gridded daily rainfall data for the period 1997–2007, rainfall at each grid point and averaged over several sites is decomposed into the frequency of rainfall events and the intensity of rainfall associated with each event. Daily sea level pressure is classified using a self-organizing map, and rainfall on corresponding days is assigned to the resulting synoptic regimes. This technique is then used to evaluate rainfall in the new Australian Community Climate and Earth-System Simulator (ACCESS) global climate model and separate the influence of large-scale circulation errors and errors due to the representation of subgrid-scale physical processes. The model exhibits similar biases to many other global climate models, simulating too frequent light rainfall and heavy rainfall of insufficient intensity. These errors are associated with particular synoptic regimes over different sectors of the Australian continent and surrounding oceans. The model simulates only weak convective rainfall over land during the summer monsoon, and heavy rainfall associated with frontal systems over southern Australia is also not simulated. As the model captures the structure and frequency of synoptic patterns, but not the associated rainfall intensity or frequency, it is likely that the source of the rainfall errors lies in model physical parameterizations rather than large-scale dynamics.
Abstract
Clouds over the Southern Ocean are often poorly represented by climate models, but they make a significant contribution to the top-of-atmosphere (TOA) radiation balance, particularly in the shortwave portion of the energy spectrum. This study seeks to better quantify the organization and structure of Southern Hemisphere midlatitude clouds by combining measurements from active and passive satellite-based datasets. Geostationary and polar-orbiter satellite data from the International Satellite Cloud Climatology Project (ISCCP) are used to quantify large-scale, recurring modes of cloudiness, and active observations from CloudSat and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) are used to examine vertical structure, radiative heating rates, and precipitation associated with these clouds. It is found that cloud systems are organized into eight distinct regimes and that ISCCP overestimates the midlevel cloudiness of these regimes. All regimes contain a relatively high occurrence of low cloud, with 79% of all cloud layers observed having tops below 3 km, but multiple-layered clouds systems are present in approximately 34% of observed cloud profiles. The spatial distribution of regimes varies according to season, with cloud systems being geometrically thicker, on average, during the austral winter. Those regimes found to be most closely associated with midlatitude cyclones produce precipitation the most frequently, although drizzle is extremely common in low-cloud regimes. The regimes associated with cyclones have the highest in-regime shortwave cloud radiative effect at the TOA, but the low-cloud regimes, by virtue of their high frequency of occurrence over the oceans, dominate both TOA and surface shortwave effects in this region as a whole.
Abstract
Clouds over the Southern Ocean are often poorly represented by climate models, but they make a significant contribution to the top-of-atmosphere (TOA) radiation balance, particularly in the shortwave portion of the energy spectrum. This study seeks to better quantify the organization and structure of Southern Hemisphere midlatitude clouds by combining measurements from active and passive satellite-based datasets. Geostationary and polar-orbiter satellite data from the International Satellite Cloud Climatology Project (ISCCP) are used to quantify large-scale, recurring modes of cloudiness, and active observations from CloudSat and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) are used to examine vertical structure, radiative heating rates, and precipitation associated with these clouds. It is found that cloud systems are organized into eight distinct regimes and that ISCCP overestimates the midlevel cloudiness of these regimes. All regimes contain a relatively high occurrence of low cloud, with 79% of all cloud layers observed having tops below 3 km, but multiple-layered clouds systems are present in approximately 34% of observed cloud profiles. The spatial distribution of regimes varies according to season, with cloud systems being geometrically thicker, on average, during the austral winter. Those regimes found to be most closely associated with midlatitude cyclones produce precipitation the most frequently, although drizzle is extremely common in low-cloud regimes. The regimes associated with cyclones have the highest in-regime shortwave cloud radiative effect at the TOA, but the low-cloud regimes, by virtue of their high frequency of occurrence over the oceans, dominate both TOA and surface shortwave effects in this region as a whole.