Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: John McGregor x
- Journal of Hydrometeorology x
- Refine by Access: All Content x
Abstract
Using a coupled atmosphere–land surface model, simulations were conducted to characterize the regional climate changes that result from the response of stomates to increases in leaf-level carbon dioxide (CO2) under differing conditions of moisture availability over Australia. Multiple realizations for multiple Januarys corresponding to dry and wet years were run, where only the leaf-level CO2 was varied at 280, 375, 500, 650, 840, and 1000 ppmv and the atmospheric CO2 was fixed at 375 ppmv. The results show the clear effect of increasing leaf-level CO2 on the transpiration via the stomatal response, particularly when sufficient moisture is available. Statistically significant reductions in transpiration generally lead to a significantly warmer land surface with decreases in rainfall. Increases in CO2 lead to increases in the magnitude and areal extent of the statistically significant mean changes in the surface climate. However, the results also show that the availability of moisture substantially affects the effect of increases in the leaf-level CO2, particularly for a moisture-limited region. The physiological feedback can indirectly lead to more rainfall via changes in the low-level moisture convergence and vertical velocity, which result in a cooling simulated over Western Australia. The significant changes in the surface climate presented in the results suggest that it is still important to incorporate these feedbacks in future climate assessments and projections for Australia. The influence of moisture availability also indicates that the capacity of the physiological feedback to affect the future climate may be affected by uncertainties in rainfall projections, particularly for water-stressed regions such as Australia.
Abstract
Using a coupled atmosphere–land surface model, simulations were conducted to characterize the regional climate changes that result from the response of stomates to increases in leaf-level carbon dioxide (CO2) under differing conditions of moisture availability over Australia. Multiple realizations for multiple Januarys corresponding to dry and wet years were run, where only the leaf-level CO2 was varied at 280, 375, 500, 650, 840, and 1000 ppmv and the atmospheric CO2 was fixed at 375 ppmv. The results show the clear effect of increasing leaf-level CO2 on the transpiration via the stomatal response, particularly when sufficient moisture is available. Statistically significant reductions in transpiration generally lead to a significantly warmer land surface with decreases in rainfall. Increases in CO2 lead to increases in the magnitude and areal extent of the statistically significant mean changes in the surface climate. However, the results also show that the availability of moisture substantially affects the effect of increases in the leaf-level CO2, particularly for a moisture-limited region. The physiological feedback can indirectly lead to more rainfall via changes in the low-level moisture convergence and vertical velocity, which result in a cooling simulated over Western Australia. The significant changes in the surface climate presented in the results suggest that it is still important to incorporate these feedbacks in future climate assessments and projections for Australia. The influence of moisture availability also indicates that the capacity of the physiological feedback to affect the future climate may be affected by uncertainties in rainfall projections, particularly for water-stressed regions such as Australia.
Abstract
Thirteen regional climate model (RCM) simulations of June–July 1993 were compared with each other and observations. Water vapor conservation and precipitation characteristics in each RCM were examined for a 10° × 10° subregion of the upper Mississippi River basin, containing the region of maximum 60-day accumulated precipitation in all RCMs and station reports.
All RCMs produced positive precipitation minus evapotranspiration (P − E > 0), though most RCMs produced P − E below the observed range. RCM recycling ratios were within the range estimated from observations. No evidence of common errors of E was found. In contrast, common dry bias of P was found in the simulations.
Daily cycles of terms in the water vapor conservation equation were qualitatively similar in most RCMs. Nocturnal maximums of P and C (convergence) occurred in 9 of 13 RCMs, consistent with observations. Three of the four driest simulations failed to couple P and C overnight, producing afternoon maximum P. Further, dry simulations tended to produce a larger fraction of their 60-day accumulated precipitation from low 3-h totals.
In station reports, accumulation from high (low) 3-h totals had a nocturnal (early morning) maximum. This time lag occurred, in part, because many mesoscale convective systems had reached peak intensity overnight and had declined in intensity by early morning. None of the RCMs contained such a time lag. It is recommended that short-period experiments be performed to examine the ability of RCMs to simulate mesoscale convective systems prior to generating long-period simulations for hydroclimatology.
Abstract
Thirteen regional climate model (RCM) simulations of June–July 1993 were compared with each other and observations. Water vapor conservation and precipitation characteristics in each RCM were examined for a 10° × 10° subregion of the upper Mississippi River basin, containing the region of maximum 60-day accumulated precipitation in all RCMs and station reports.
All RCMs produced positive precipitation minus evapotranspiration (P − E > 0), though most RCMs produced P − E below the observed range. RCM recycling ratios were within the range estimated from observations. No evidence of common errors of E was found. In contrast, common dry bias of P was found in the simulations.
Daily cycles of terms in the water vapor conservation equation were qualitatively similar in most RCMs. Nocturnal maximums of P and C (convergence) occurred in 9 of 13 RCMs, consistent with observations. Three of the four driest simulations failed to couple P and C overnight, producing afternoon maximum P. Further, dry simulations tended to produce a larger fraction of their 60-day accumulated precipitation from low 3-h totals.
In station reports, accumulation from high (low) 3-h totals had a nocturnal (early morning) maximum. This time lag occurred, in part, because many mesoscale convective systems had reached peak intensity overnight and had declined in intensity by early morning. None of the RCMs contained such a time lag. It is recommended that short-period experiments be performed to examine the ability of RCMs to simulate mesoscale convective systems prior to generating long-period simulations for hydroclimatology.