Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: John T. Allen x
  • Artificial Intelligence for the Earth Systems x
  • Refine by Access: All Content x
Clear All Modify Search
Andrew D. Justin
Colin Willingham
Amy McGovern
, and
John T. Allen


We present and evaluate a deep learning first-guess front-identification system that identifies cold, warm, stationary, and occluded fronts. Frontal boundaries play a key role in the daily weather around the world. Human-drawn fronts provided by the National Weather Service’s Weather Prediction Center, Ocean Prediction Center, Tropical Analysis and Forecast Branch, and Honolulu Forecast Office are treated as ground-truth labels for training the deep learning models. The models are trained using ERA5 data with variables known to be important for distinguishing frontal boundaries, including temperature, equivalent potential temperature, and wind velocity and direction at multiple heights. Using a 250-km neighborhood over the contiguous U.S. domain, our best models achieve critical success index scores of 0.60 for cold fronts, 0.43 for warm fronts, 0.48 for stationary fronts, 0.45 for occluded fronts, and 0.71 using a binary classification system (front/no front), whereas scores over the full unified surface analysis domain were lower. For cold and warm fronts and binary classification, these scores significantly outperform prior baseline methods that utilize 250-km neighborhoods. These first-guess deep learning algorithms can be used by forecasters to locate frontal boundaries more effectively and expedite the frontal analysis process.

Significance Statement

Fronts are boundaries that affect the weather that people experience daily. Currently, forecasters must identify these boundaries through manual analysis. We have developed an automated machine learning method for detecting cold, warm, stationary, and occluded fronts. Our automated method provides forecasters with an additional tool to expedite the frontal analysis process.

Open access