Search Results
You are looking at 1 - 6 of 6 items for :
- Author or Editor: John T. Allen x
- Monthly Weather Review x
- Refine by Access: All Content x
Abstract
During 2013, multiple tornadoes occurred across Australia, leading to 147 injuries and considerable damage. This prompted speculation as to the frequency of these events in Australia, and whether 2013 constituted a record year. Leveraging media reports, public accounts, and the Bureau of Meteorology observational record, 69 tornadoes were identified for the year in comparison to the official count of 37 events. This identified set and the existing historical record were used to establish that, in terms of spatial distribution, 2013 was not abnormal relative to the existing climatology, but numerically exceeded any year in the bureau’s record. Evaluation of the environments in which these tornadoes formed illustrated that these conditions included tornado environments found elsewhere globally, but generally had a stronger dependence on shear magnitude than direction, and lower lifting condensation levels. Relative to local environment climatology, 2013 was also not anomalous. These results illustrate a range of tornadoes associated with cool season, tropical cyclone, east coast low, supercell tornado, and low shear/storm merger environments. Using this baseline, the spatial climatology from 1980 to 2019 as derived from the nonconditional frequency of favorable significant tornado parameter environments for the year is used to highlight that observations are likely an underestimation. Applying the results, discussion is made of the need to expand observing practices, climatology, forecasting guidelines for operational prediction, and improve the warning system. This highlights a need to ensure that the general public is appropriately informed of the tornado hazard in Australia, and provide them with the understanding to respond accordingly.
Abstract
During 2013, multiple tornadoes occurred across Australia, leading to 147 injuries and considerable damage. This prompted speculation as to the frequency of these events in Australia, and whether 2013 constituted a record year. Leveraging media reports, public accounts, and the Bureau of Meteorology observational record, 69 tornadoes were identified for the year in comparison to the official count of 37 events. This identified set and the existing historical record were used to establish that, in terms of spatial distribution, 2013 was not abnormal relative to the existing climatology, but numerically exceeded any year in the bureau’s record. Evaluation of the environments in which these tornadoes formed illustrated that these conditions included tornado environments found elsewhere globally, but generally had a stronger dependence on shear magnitude than direction, and lower lifting condensation levels. Relative to local environment climatology, 2013 was also not anomalous. These results illustrate a range of tornadoes associated with cool season, tropical cyclone, east coast low, supercell tornado, and low shear/storm merger environments. Using this baseline, the spatial climatology from 1980 to 2019 as derived from the nonconditional frequency of favorable significant tornado parameter environments for the year is used to highlight that observations are likely an underestimation. Applying the results, discussion is made of the need to expand observing practices, climatology, forecasting guidelines for operational prediction, and improve the warning system. This highlights a need to ensure that the general public is appropriately informed of the tornado hazard in Australia, and provide them with the understanding to respond accordingly.
Abstract
Assessments of spatiotemporal severe hailfall characteristics using hail reports are plagued by serious limitations in report databases, including biases in reported sizes, occurrence time, and location. Multiple studies have used Next Generation Weather Radar (NEXRAD) network observations or environmental hail proxies from reanalyses. Previous work has specifically utilized the single-polarization radar parameter maximum expected size of hail (MESH). In addition to previous work being temporally limited, updates are needed to include recent improvements that have been made to MESH. This study aims to quantify severe hailfall characteristics during a 23-yr period, markedly longer than previous studies, using both radar observations and reanalysis data. First, the improved MESH configuration is applied to the full archive of gridded hourly radar observations known as GridRad (1995–2017). Next, environmental constraints from the Modern-Era Retrospective Analysis for Research and Applications, version 2, are applied to the MESH distributions to produce a corrected hailfall climatology that accounts for the reduced likelihood of hail reaching the ground. Spatial, diurnal, and seasonal patterns show that in contrast to the report climatology indicating one high-frequency hail maximum centered on the Great Plains, the MESH-only method characterizes two regions: the Great Plains and the Gulf Coast. The environmentally filtered MESH climatology reveals improved agreement between report characteristics (frequency, location, and timing) and the recently improved MESH calculation methods, and it reveals an overall increase in diagnosed hail days and westward broadening in the spatial maximum in the Great Plains than that seen in reports.
Abstract
Assessments of spatiotemporal severe hailfall characteristics using hail reports are plagued by serious limitations in report databases, including biases in reported sizes, occurrence time, and location. Multiple studies have used Next Generation Weather Radar (NEXRAD) network observations or environmental hail proxies from reanalyses. Previous work has specifically utilized the single-polarization radar parameter maximum expected size of hail (MESH). In addition to previous work being temporally limited, updates are needed to include recent improvements that have been made to MESH. This study aims to quantify severe hailfall characteristics during a 23-yr period, markedly longer than previous studies, using both radar observations and reanalysis data. First, the improved MESH configuration is applied to the full archive of gridded hourly radar observations known as GridRad (1995–2017). Next, environmental constraints from the Modern-Era Retrospective Analysis for Research and Applications, version 2, are applied to the MESH distributions to produce a corrected hailfall climatology that accounts for the reduced likelihood of hail reaching the ground. Spatial, diurnal, and seasonal patterns show that in contrast to the report climatology indicating one high-frequency hail maximum centered on the Great Plains, the MESH-only method characterizes two regions: the Great Plains and the Gulf Coast. The environmentally filtered MESH climatology reveals improved agreement between report characteristics (frequency, location, and timing) and the recently improved MESH calculation methods, and it reveals an overall increase in diagnosed hail days and westward broadening in the spatial maximum in the Great Plains than that seen in reports.
Abstract
Hail size records are analyzed at 2254 stations in China and a hail size climatology is developed based on gridded hail observations for the period 1960–2015. It is found that the annual percentiles of hail size records changed sharply and national-wide after 1980, therefore two periods, 1960–79 and 1980–2015, are studied. There are some similarities between the two periods in terms of the characteristics of hail size such as the spatial distribution patterns of mean annual maximum hail size and occurrence week of annual maximum hail size. The 1980–2015 period had higher observation density than the 1960–79 period, but showed smaller mean annual maximum hail size, especially in northern China. In the majority of grid boxes, the annual maximum hail size experienced a decreasing trend during the 1980–2015 period. A Gumbel extreme value model is fitted to each grid box to estimate the return periods of maximum hail size. The scale and location parameter of the fitted Gumbel distributions are higher in eastern China than in western China, thereby reflecting a greater likelihood of large hail in eastern China. In southern China, the maximum hail size exceeds 127 mm for a 10-yr return period, whereas in northern China maximum hail size exceeds this threshold for a 50-yr return period. The Gumbel model is found to potentially underestimate the maximum hail size for certain return periods, but provides a more informed picture of the spatial distribution of extreme hail size and the regional differences.
Abstract
Hail size records are analyzed at 2254 stations in China and a hail size climatology is developed based on gridded hail observations for the period 1960–2015. It is found that the annual percentiles of hail size records changed sharply and national-wide after 1980, therefore two periods, 1960–79 and 1980–2015, are studied. There are some similarities between the two periods in terms of the characteristics of hail size such as the spatial distribution patterns of mean annual maximum hail size and occurrence week of annual maximum hail size. The 1980–2015 period had higher observation density than the 1960–79 period, but showed smaller mean annual maximum hail size, especially in northern China. In the majority of grid boxes, the annual maximum hail size experienced a decreasing trend during the 1980–2015 period. A Gumbel extreme value model is fitted to each grid box to estimate the return periods of maximum hail size. The scale and location parameter of the fitted Gumbel distributions are higher in eastern China than in western China, thereby reflecting a greater likelihood of large hail in eastern China. In southern China, the maximum hail size exceeds 127 mm for a 10-yr return period, whereas in northern China maximum hail size exceeds this threshold for a 50-yr return period. The Gumbel model is found to potentially underestimate the maximum hail size for certain return periods, but provides a more informed picture of the spatial distribution of extreme hail size and the regional differences.
Abstract
Severe storms produce hazardous weather phenomena, such as large hail, damaging winds, and tornadoes. However, relationships between convective parameters and confirmed severe weather occurrences are poorly quantified in south-central Brazil. This study explores severe weather reports and measurements from newly available datasets. Hail, damaging wind, and tornado reports are sourced from the PREVOTS project from June 2018 to December 2021, while measurements of convectively induced wind gusts from 1996 to 2019 are obtained from METAR reports and from Brazil’s operational network of automated weather stations. Proximal convective parameters were computed from ERA5 reanalysis for these reports and used to perform a discriminant analysis using mixed-layer CAPE and deep-layer shear (DLS). Compared to other regions, thermodynamic parameters associated with severe weather episodes exhibit lower magnitudes in south-central Brazil. DLS displays better performance in distinguishing different types of hazardous weather, but does not discriminate well between distinct severity levels. To address the sensitivity of the discriminant analysis to distinct environmental regimes and hazard types, five different discriminants are assessed. These include discriminants for any severe storm, severe hail only, severe wind gust only, and all environments but broken into “high” and “low” CAPE regimes. The best performance of the discriminant analysis is found for the “high” CAPE regime, followed by the severe wind regime. All discriminants demonstrate that DLS plays a more important role in conditioning Brazilian severe storm environments than other regions, confirming the need to ensure that parameters and discriminants are tuned to local severe weather conditions.
Abstract
Severe storms produce hazardous weather phenomena, such as large hail, damaging winds, and tornadoes. However, relationships between convective parameters and confirmed severe weather occurrences are poorly quantified in south-central Brazil. This study explores severe weather reports and measurements from newly available datasets. Hail, damaging wind, and tornado reports are sourced from the PREVOTS project from June 2018 to December 2021, while measurements of convectively induced wind gusts from 1996 to 2019 are obtained from METAR reports and from Brazil’s operational network of automated weather stations. Proximal convective parameters were computed from ERA5 reanalysis for these reports and used to perform a discriminant analysis using mixed-layer CAPE and deep-layer shear (DLS). Compared to other regions, thermodynamic parameters associated with severe weather episodes exhibit lower magnitudes in south-central Brazil. DLS displays better performance in distinguishing different types of hazardous weather, but does not discriminate well between distinct severity levels. To address the sensitivity of the discriminant analysis to distinct environmental regimes and hazard types, five different discriminants are assessed. These include discriminants for any severe storm, severe hail only, severe wind gust only, and all environments but broken into “high” and “low” CAPE regimes. The best performance of the discriminant analysis is found for the “high” CAPE regime, followed by the severe wind regime. All discriminants demonstrate that DLS plays a more important role in conditioning Brazilian severe storm environments than other regions, confirming the need to ensure that parameters and discriminants are tuned to local severe weather conditions.
Abstract
Using measurements from the Department of Energy’s Atmospheric Radiation Measurement Program, a modified ground-based remote sensing technique is developed and evaluated to study the impacts of the subadiabatic character of continental low-level stratiform clouds on microphysical properties and radiation budgets. Airborne measurements and millimeter-wavelength cloud radar data are used to validate retrieved microphysical properties of three stratus cloud systems occurring in the April 1994 and 1997 intensive observation periods at the Southern Great Plains site.
The addition of the observed cloud-top height into the Han and Westwater retrieval scheme eliminates the need to invoke the adiabatic assumption. Thus, the retrieved liquid water content (LWC) profile is represented as the product of an adiabatic LWC profile and a weighting function. Based on in situ measurements, two types of weighting functions are considered in this study: one is associated with a subadiabatic condition involving cloud-top entrainment mixing alone (type I) and the other accounts for both cloud-top entrainment mixing and drizzle effects (type II). The adiabatic cloud depth ratio (ACDR), defined as the ratio of the actual cloud depth to the one derived from the adiabatic assumption, is found to be a useful parameter for classifying the subadiabatic character of low-level stratiform clouds. The type I weighting function only exists in the lower ACDR regime, while the type II profile can appear for any adiabatic cloud depth ratio.
Results indicate that the subadiabatic character of low-level stratiform clouds has substantial impacts on radiative energy budgets, especially those in the shortwave, via the retrieved LWC distribution and its related effective radius profile of liquid water. Results also show that this subadiabatic character can act to stabilize the cloud deck by reducing the in-cloud radiative heating/cooling contrast. As a whole, these impacts strengthen as the subadiabatic character of low-level stratiform clouds increases.
Abstract
Using measurements from the Department of Energy’s Atmospheric Radiation Measurement Program, a modified ground-based remote sensing technique is developed and evaluated to study the impacts of the subadiabatic character of continental low-level stratiform clouds on microphysical properties and radiation budgets. Airborne measurements and millimeter-wavelength cloud radar data are used to validate retrieved microphysical properties of three stratus cloud systems occurring in the April 1994 and 1997 intensive observation periods at the Southern Great Plains site.
The addition of the observed cloud-top height into the Han and Westwater retrieval scheme eliminates the need to invoke the adiabatic assumption. Thus, the retrieved liquid water content (LWC) profile is represented as the product of an adiabatic LWC profile and a weighting function. Based on in situ measurements, two types of weighting functions are considered in this study: one is associated with a subadiabatic condition involving cloud-top entrainment mixing alone (type I) and the other accounts for both cloud-top entrainment mixing and drizzle effects (type II). The adiabatic cloud depth ratio (ACDR), defined as the ratio of the actual cloud depth to the one derived from the adiabatic assumption, is found to be a useful parameter for classifying the subadiabatic character of low-level stratiform clouds. The type I weighting function only exists in the lower ACDR regime, while the type II profile can appear for any adiabatic cloud depth ratio.
Results indicate that the subadiabatic character of low-level stratiform clouds has substantial impacts on radiative energy budgets, especially those in the shortwave, via the retrieved LWC distribution and its related effective radius profile of liquid water. Results also show that this subadiabatic character can act to stabilize the cloud deck by reducing the in-cloud radiative heating/cooling contrast. As a whole, these impacts strengthen as the subadiabatic character of low-level stratiform clouds increases.
Abstract
The spatial distribution of return intervals for U.S. hail size is explored within the framework of extreme value theory using observations from the period 1979–2013. The center of the continent has experienced hail in excess of 5 in. (127 mm) during the past 30 yr, whereas hail in excess of 1 in. (25 mm) is more common in other regions, including the West Coast. Observed hail sizes show heavy quantization toward fixed-diameter reference objects and are influenced by spatial and temporal biases similar to those noted for hail occurrence. Recorded hail diameters have been growing in recent decades because of improved reporting. These data limitations motivate exploration of extreme value distributions to represent the return periods for various hail diameters. The parameters of a Gumbel distribution are fit to dithered observed annual maxima on a national 1° × 1° grid at locations with sufficient records. Gridded and kernel-smoothed return sizes and quantiles up to the 200-yr return period are determined for the fitted Gumbel distribution. These results are used to illustrate return levels for hail greater than a given size for at least one location within each 1° × 1° grid box for the United States.
Abstract
The spatial distribution of return intervals for U.S. hail size is explored within the framework of extreme value theory using observations from the period 1979–2013. The center of the continent has experienced hail in excess of 5 in. (127 mm) during the past 30 yr, whereas hail in excess of 1 in. (25 mm) is more common in other regions, including the West Coast. Observed hail sizes show heavy quantization toward fixed-diameter reference objects and are influenced by spatial and temporal biases similar to those noted for hail occurrence. Recorded hail diameters have been growing in recent decades because of improved reporting. These data limitations motivate exploration of extreme value distributions to represent the return periods for various hail diameters. The parameters of a Gumbel distribution are fit to dithered observed annual maxima on a national 1° × 1° grid at locations with sufficient records. Gridded and kernel-smoothed return sizes and quantiles up to the 200-yr return period are determined for the fitted Gumbel distribution. These results are used to illustrate return levels for hail greater than a given size for at least one location within each 1° × 1° grid box for the United States.