Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: John Thuburn x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
Manuel Pulido
and
John Thuburn

Abstract

Using a variational technique, middle atmosphere gravity wave drag (GWD) is estimated from Met Office middle atmosphere analyses for the year 2002. The technique employs an adjoint model of a middle atmosphere dynamical model to minimize a cost function that measures the differences between the model state and observations. The control variables are solely the horizontal components of GWD; therefore, the minimization determines the optimal estimate of the drag. For each month, Met Office analyses are taken as the initial condition for the first day of the month, and also as observations for each successive day. In this way a three-dimensional GWD field is obtained for the entire year with a temporal resolution of 1 day. GWD shows a pronounced seasonal cycle. During solstices, there are deceleration regions of the polar jet centered at about 63° latitude in the winter hemisphere, with a peak of 49 m s−1 day−1 at 0.24 hPa in the Southern Hemisphere; the summer hemisphere also shows a deceleration region but much weaker, with a peak of 24 m s−1 day−1 centered at 45° latitude and 0.6 hPa. During equinoxes GWD is weak and exhibits a smooth transition between the winter and summer situation. The height and latitude of the deceleration center in both winter and summer hemispheres appear to be constant. Important longitudinal dependencies in GWD are found that are related to planetary wave activity; GWD intensifies in the exit region of jet streaks. In the lower tropical stratosphere, the estimated GWD shows a westward GWD descending together with the westward phase of the quasi-biennial oscillation. Above, GWD exhibits a semiannual pattern that is approximately out of phase with the semiannual oscillation in the zonal wind. Furthermore, a descending GWD pattern is found at those heights, similar in magnitude and sign to that in the lower stratosphere.

Full access
Steven C. Hardiman
,
Ian A. Boutle
,
Andrew C. Bushell
,
Neal Butchart
,
Mike J. P. Cullen
,
Paul R. Field
,
Kalli Furtado
,
James C. Manners
,
Sean F. Milton
,
Cyril Morcrette
,
Fiona M. O’Connor
,
Ben J. Shipway
,
Chris Smith
,
David N. Walters
,
Martin R. Willett
,
Keith D. Williams
,
Nigel Wood
,
N. Luke Abraham
,
James Keeble
,
Amanda C. Maycock
,
John Thuburn
, and
Matthew T. Woodhouse

Abstract

A warm bias in tropical tropopause temperature is found in the Met Office Unified Model (MetUM), in common with most models from phase 5 of CMIP (CMIP5). Key dynamical, microphysical, and radiative processes influencing the tropical tropopause temperature and lower-stratospheric water vapor concentrations in climate models are investigated using the MetUM. A series of sensitivity experiments are run to separate the effects of vertical advection, ice optical and microphysical properties, convection, cirrus clouds, and atmospheric composition on simulated tropopause temperature and lower-stratospheric water vapor concentrations in the tropics. The numerical accuracy of the vertical advection, determined in the MetUM by the choice of interpolation and conservation schemes used, is found to be particularly important. Microphysical and radiative processes are found to influence stratospheric water vapor both through modifying the tropical tropopause temperature and through modifying upper-tropospheric water vapor concentrations, allowing more water vapor to be advected into the stratosphere. The representation of any of the processes discussed can act to significantly reduce biases in tropical tropopause temperature and stratospheric water vapor in a physical way, thereby improving climate simulations.

Full access