Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Joseph Santanello x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
Eric Rappin, Rezaul Mahmood, Udaysankar Nair, Roger A. Pielke Sr., William Brown, Steve Oncley, Joshua Wurman, Karen Kosiba, Aaron Kaulfus, Chris Phillips, Emilee Lachenmeier, Joseph Santanello Jr., Edward Kim, and Patricia Lawston-Parker


Extensive expansion in irrigated agriculture has taken place over the last half century. Due to increased irrigation and resultant land use land cover change, the central United States has seen a decrease in temperature and changes in precipitation during the second half of 20th century. To investigate the impacts of widespread commencement of irrigation at the beginning of the growing season and continued irrigation throughout the summer on local and regional weather, the Great Plains Irrigation Experiment (GRAINEX) was conducted in the spring and summer of 2018 in southeastern Nebraska. GRAINEX consisted of two, 15-day intensive observation periods. Observational platforms from multiple agencies and universities were deployed to investigate the role of irrigation in surface moisture content, heat fluxes, diurnal boundary layer evolution, and local precipitation.

This article provides an overview of the data collected and an analysis of the role of irrigation in land-atmosphere interactions on time scales from the seasonal to the diurnal. The analysis shows that a clear irrigation signal was apparent during the peak growing season in mid-July. This paper shows the strong impact of irrigation on surface fluxes, near-surface temperature and humidity, as well as boundary layer growth and decay.

Full access
Joseph A. Santanello Jr., Paul A. Dirmeyer, Craig R. Ferguson, Kirsten L. Findell, Ahmed B. Tawfik, Alexis Berg, Michael Ek, Pierre Gentine, Benoit P. Guillod, Chiel van Heerwaarden, Joshua Roundy, and Volker Wulfmeyer


Land–atmosphere (L-A) interactions are a main driver of Earth’s surface water and energy budgets; as such, they modulate near-surface climate, including clouds and precipitation, and can influence the persistence of extremes such as drought. Despite their importance, the representation of L-A interactions in weather and climate models remains poorly constrained, as they involve a complex set of processes that are difficult to observe in nature. In addition, a complete understanding of L-A processes requires interdisciplinary expertise and approaches that transcend traditional research paradigms and communities. To address these issues, the international Global Energy and Water Exchanges project (GEWEX) Global Land–Atmosphere System Study (GLASS) panel has supported “L-A coupling” as one of its core themes for well over a decade. Under this initiative, several successful land surface and global climate modeling projects have identified hot spots of L-A coupling and helped quantify the role of land surface states in weather and climate predictability. GLASS formed the Local Land–Atmosphere Coupling (LoCo) project and working group to examine L-A interactions at the process level, focusing on understanding and quantifying these processes in nature and evaluating them in models. LoCo has produced an array of L-A coupling metrics for different applications and scales and has motivated a growing number of young scientists from around the world. This article provides an overview of the LoCo effort, including metric and model applications, along with scientific and programmatic developments and challenges.

Open access